Analysis of Large-Scale Traffic Dynamics in an Urban Transportation Network Using Non-Negative Tensor Factorization

被引:52
作者
Han Y. [1 ]
Moutarde F. [2 ]
机构
[1] RITS(previously IMARA), INRIA, Domaine de Voluceau, Rocquencourt
[2] Robotics Lab (CAOR), Mines ParisTech, PSL Research University, 60 Boulevard Saint-Michel, Paris
关键词
Large-scale traffic dynamics; Non-negative tensor factorization;
D O I
10.1007/s13177-014-0099-7
中图分类号
学科分类号
摘要
In this paper, we present our work on clustering and prediction of temporal evolution of global congestion configurations in a large-scale urban transportation network. Instead of looking into temporal variations of traffic flow states of individual links, we focus on temporal evolution of the complete spatial configuration of congestions over the network. In our work, we pursue to describe the typical temporal patterns of the global traffic states and achieve long-term prediction of the large-scale traffic evolution in a unified data-mining framework. To this end, we formulate this joint task using regularized Non-negative Tensor Factorization, which has been shown to be a useful analysis tool for spatio-temporal data sequences. Clustering and prediction are performed based on the compact tensor factorization results. The validity of the proposed spatio-temporal traffic data analysis method is shown on experiments using simulated realistic traffic data. © 2014, Springer Science+Business Media New York.
引用
收藏
页码:36 / 49
页数:13
相关论文
共 44 条
[1]  
Herring R., Hofleitner A., Amin S., Nasr T., Khalek A., Abbeel P., Bayen A., ‘Using mobile phones to forecast arterial traffic through statistical learning’. Proc. 89th Transportation Research Board Annual Meeting, (2010)
[2]  
Kinuta Y., Kitamura S., Nakamura T., Makimura K., Takahashi M., Morokawa T., Examination of the applicability of probe car data to assessment of the effects of link-safety projects, Int. J. Intell. Transp. Syst. Res., 8, 2, pp. 67-76, (2010)
[3]  
Work D., Blandin S., Tossavainen O.-P., Piccoli B., Bayen A., A Distributed Highway Velocity Model forTraffic State Reconstruction, Appl. Math. Res. Express (AMRX), 1, pp. 1-35, (2010)
[4]  
Thiagarajan A., Sivalingam L., LaCurts K., Toledo S., Eriksson J., Madden S., Balakrishnan, H.: ‘VTrack: Accurate, energy-aware traffic delay estimation using mobile phones’. Proc. 7th ACM Conf. Embedded Networked Sensor Systems (SenSys), Berkeley CA (USA), pp. 85-98, (2009)
[5]  
Krause A., Horvitz E., Kansal A., Zhao, F.: ‘Toward community sensing’. Proc. of Int. Conf. on Information Processing in Sensor Networks (IPSN), St Louis (USA), pp. 481-492, (2008)
[6]  
Liu H., Ma W., A virtual vehicle probe model for time-dependent travel time estimation on signalized arterials, Transp. Res. C, 17, 1, pp. 11-26, (2009)
[7]  
Jaeger A., Bibmeyer N., Stubing H., Huss A.S., A novel framework for efficient mobility data verification in vehicular Ad-hoc networks, Int. J. Intell. Transp. Syst. Res., 10, 1, pp. 11-21, (2012)
[8]  
Vanajakshi L., Subramanian S.C., Sivanandan R., Travel time prediction under heterogeneous traffic conditions using global positioning system data from buses, IET Intell. Transp. Syst., 3, 1, pp. 1-9, (2009)
[9]  
Chowdhury D., Santen L., Schadschneider A., Statistical physics of vehicular traffic and some related systems, Phys. Rep., 329, pp. 199-329, (2000)
[10]  
Herty M., Klar A., Pareschi L., General kinetic models for vehicular traffic flow and Monte Carlo methods’, Comput. Methods Appl. Math., 5, 2, pp. 155-169, (2005)