On maximum additive Hermitian rank-metric codes

被引:0
作者
Rocco Trombetti
Ferdinando Zullo
机构
[1] Università degli Studi di Napoli “Federico II”,Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”
[2] Università degli Studi della Campania “Luigi Vanvitelli”,Dipartimento di Matematica e Fisica
来源
Journal of Algebraic Combinatorics | 2021年 / 54卷
关键词
Hermitian matrix; Rank metric code; Linearized polynomial; 05E15; 05E30; 51E22;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by the work of Zhou (Des Codes Cryptogr 88:841–850, 2020) based on the paper of Schmidt (J Algebraic Combin 42(2):635–670, 2015), we investigate the equivalence issue of maximum d-codes of Hermitian matrices. More precisely, in the space Hn(q2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{H}}_n(q^2)$$\end{document} of Hermitian matrices over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^2}$$\end{document} we have two possible equivalences: the classical one coming from the maps that preserve the rank in Fq2n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^2}^{n\times n}$$\end{document}, and the one that comes from restricting to those maps preserving both the rank and the space Hn(q2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}_n(q^2)$$\end{document}. We prove that when d<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d<n$$\end{document} and the codes considered are maximum additive d-codes and (n-d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-d)$$\end{document}-designs, these two equivalence relations coincide. As a consequence, we get that the idealisers of such codes are not distinguishers, unlike what usually happens for rank metric codes. Finally, we deal with the combinatorial properties of known maximum Hermitian codes and, by means of this investigation, we present a new family of maximum Hermitian 2-code, extending the construction presented by Longobardi et al. (Discrete Math 343(7):111871, 2020).
引用
收藏
页码:151 / 171
页数:20
相关论文
共 59 条
[11]  
Zullo F(2009)Galois extensions and subspaces of alterning bilinear forms with special rank properties Linear Algebra Appl. 430 1778-1789
[12]  
Csajbók B(2016)Galois theory and linear algebra Arch. Math. 107 355-366
[13]  
Marino G(2020)Automorphism groups of Gabidulin-like codes Discrete Math. 343 111871-142
[14]  
Zullo F(2011)Automorphism groups and new constructions of maximum additive rank metric codes with restrictions Ric. Mat. 60 125-106
[15]  
Coulter RS(2018)Symplectic semifield spreads of J. Combin. Theory Ser. A 159 79-340
[16]  
Henderson M(2017) and the veronese surface J. Algebraic Combin. 46 313-114
[17]  
Delsarte P(2020)Generalized twisted gabidulin codes Linear Algebra Appl. 591 99-218
[18]  
Delsarte P(2020)On kernels and nuclei of rank metric codes Linear Algebra Appl. 601 189-488
[19]  
Goethals JM(2016)MRD-codes arising from the trinomial Adv. Math. Commun. 10 475-1026
[20]  
Gabidulin E(2010)On the number of roots of some linearized polynomials J. Combin. Theory Ser. A 117 1011-670