On maximum additive Hermitian rank-metric codes

被引:0
作者
Rocco Trombetti
Ferdinando Zullo
机构
[1] Università degli Studi di Napoli “Federico II”,Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”
[2] Università degli Studi della Campania “Luigi Vanvitelli”,Dipartimento di Matematica e Fisica
来源
Journal of Algebraic Combinatorics | 2021年 / 54卷
关键词
Hermitian matrix; Rank metric code; Linearized polynomial; 05E15; 05E30; 51E22;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by the work of Zhou (Des Codes Cryptogr 88:841–850, 2020) based on the paper of Schmidt (J Algebraic Combin 42(2):635–670, 2015), we investigate the equivalence issue of maximum d-codes of Hermitian matrices. More precisely, in the space Hn(q2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{H}}_n(q^2)$$\end{document} of Hermitian matrices over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^2}$$\end{document} we have two possible equivalences: the classical one coming from the maps that preserve the rank in Fq2n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^2}^{n\times n}$$\end{document}, and the one that comes from restricting to those maps preserving both the rank and the space Hn(q2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H}_n(q^2)$$\end{document}. We prove that when d<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d<n$$\end{document} and the codes considered are maximum additive d-codes and (n-d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-d)$$\end{document}-designs, these two equivalence relations coincide. As a consequence, we get that the idealisers of such codes are not distinguishers, unlike what usually happens for rank metric codes. Finally, we deal with the combinatorial properties of known maximum Hermitian codes and, by means of this investigation, we present a new family of maximum Hermitian 2-code, extending the construction presented by Longobardi et al. (Discrete Math 343(7):111871, 2020).
引用
收藏
页码:151 / 171
页数:20
相关论文
共 59 条
[1]  
Carlitz L(1955)Representations by Hermitian forms in a finite field Duke Math. J. 22 393-405
[2]  
Hodges JH(2020)Scalar J. Algebra 547 116-128
[3]  
Csajbók B(2018)-subresultants and Dickson matrices Linear Algebra Appl. 548 203-220
[4]  
Csajbók B(2019)A new family of MRD-codes Finite Fields Appl. 56 109-130
[5]  
Marino G(2018)A characterization of linearized polynomials with maximum kernel Finite Fields Appl. 54 133-150
[6]  
Polverino O(2008)New maximum scattered linear sets of the projective line Adv. Math. 217 282-304
[7]  
Zanella C(1978)Commutative presemifields and semifields J. Combin. Theory Ser. A 25 226-241
[8]  
Csajbók B(1975)Bilinear forms over a finite field, with applications to coding theory J. Combin. Theory Ser. A 19 26-50
[9]  
Marino G(1985)Alternating bilinear forms over Probl. Inf. Transm. 21 3-16
[10]  
Polverino O(2009)Theory of codes with maximum rank distance Linear Algebra Appl. 430 2212-2224