Homogenization of the Prager model in one-dimensional plasticity

被引:0
作者
Ben Schweizer
机构
[1] Fakultät für Mathematik,
[2] TU Dortmund,undefined
来源
Continuum Mechanics and Thermodynamics | 2009年 / 20卷
关键词
Effective model; Hysteresis; Plasticity; Prager model; Differential inclusion; Nonlinear wave equation; 46.35.+z; 62.20.F-;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new method for the homogenization of hysteresis models of plasticity. For the one-dimensional wave equation with an elasto-plastic stress-strain relation we derive averaged equations and perform the homogenization limit for stochastic material parameters. This generalizes results of the seminal paper by Franců and Krejčí. Our approach rests on energy methods for partial differential equations and provides short proofs without recurrence to hysteresis operator theory.
引用
收藏
页码:459 / 477
页数:18
相关论文
共 21 条
[1]  
Allaire G.(1992)Homogenization and two-scale convergence SIAM J. Math. Anal. 23 1482-1518
[2]  
Beliaev A.(2003)Homogenization of two-phase flows in porous media with hysteresis in the capillary relation Eur. J. Appl. Math. 14 61-84
[3]  
Bouchitté G.(1986/1987)Convergence et relaxation de fonctionnelles du calcul des variations à croissance linéaire. Application à l’homogénéisation en plasticité Ann. Fac. Sci. Toulouse Math. (5) 8 7-36
[4]  
Bourgeat A.(1994)Stochastic two-scale convergence in the mean and applications J. Reine Angew. Math. 456 19-51
[5]  
Mikelic A.(2005)Dislocation microstructures and the effective behavior of single crystals Arch. Ration. Mech. Anal. 176 103-147
[6]  
Wright S.(1986)Nonlinear stochastic homogenization Ann. Mat. pura appl. 144 347-389
[7]  
Conti S.(1999)Homogenization of scalar wave equations with hysteresis Contin. Mech. Thermodyn. 11 371-390
[8]  
Ortiz M.(2007)A homogenization result for a parabolic equation with Preisach hysteresis ZAMM Z. Angew. Math. Mech. 87 352-359
[9]  
Dal Maso G.(1980)Averaging of random operators Math. USSR Sbornik 37 167-179
[10]  
Modica L.(1989)A general convergence result for a functional related to the theory of homogenization SIAM J. Math. Anal. 20 608-623