On solutions to the wave equation on a non-globally hyperbolic manifold

被引:0
作者
I. V. Volovich
O. V. Groshev
N. A. Gusev
E. A. Kuryanovich
机构
[1] Russian Academy of Sciences,Steklov Mathematical Institute
[2] Moscow State University,undefined
[3] Moscow Institute of Physics and Technology,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2009年 / 265卷
关键词
Wave Equation; Cauchy Problem; STEKLOV Institute; Classical Solution; Hyperbolic Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the wave equation on a non-globally hyperbolic manifold of special form (the Minkowski plane with a handle) containing closed time-like curves. We prove that the classical solution of the Cauchy problem exists and is unique for initial data satisfying a specific set of additional requirements.
引用
收藏
页码:262 / 275
页数:13
相关论文
共 39 条
  • [1] Petrowsky I.(1937)Über das Cauchysche Problem für Systeme von partiellen Differentialgleichungen Mat. Sb. 2 815-870
  • [2] Deser S.(1992)Time Travel? Comments Nucl. Part. Phys. 20 337-354
  • [3] Jackiw R.(2000)High Energy Scattering in the Brane-World and Black-Hole Production Fiz. Elem. Chastits At. Yadra 31 169-180
  • [4] Aref’eva I. Ya.(2006)Closed Timelike Curves and Geodesics of Gödel-Type Metrics Class. Quantum Grav. 23 2653-2663
  • [5] Gleiser R. J.(2007)Stability of Closed Timelike Curves in the Gödel Universe Gen. Relativ. Gravit. 39 1419-1435
  • [6] Gürses M.(2008)The Null Energy Condition and Cosmology Teor. Mat. Fiz. 155 3-12
  • [7] Karasu A.(2008)Phantom Stars and Topology Change Phys. Rev. D 78 104003-1930
  • [8] Sarıoğlu V. M.(1990)Cauchy Problem in Spacetimes with Closed Timelike Curves Phys. Rev. D 42 1915-3217
  • [9] Rosa P. S.(1991)Quantum Mechanics near Closed Timelike Lines Phys. Rev. D 44 3197-3989
  • [10] Letelier I. Ya.(1994)Path Integrals, Density Matrices, and Information Flow with Closed Timelike Curves Phys. Rev. D 49 3981-344