Fractional Calculus of Variations: A Novel Way to Look At It

被引:0
作者
Rui A. C. Ferreira
机构
[1] Faculdade de Ciências Universidade de Lisboa,Grupo Física
来源
Fractional Calculus and Applied Analysis | 2019年 / 22卷
关键词
Primary 49K30; Secondary 26A33; calculus of variations; fractional derivative; Euler–Lagrange equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we look at the original fractional calculus of variations problem in a somewhat different way. As a simple consequence, we show that a fractional generalization of a classical problem has a solution without any restrictions on the derivative-order α.
引用
收藏
页码:1133 / 1144
页数:11
相关论文
共 14 条
  • [1] Agrawal OP(2002)Formulation of Euler-Lagrange equations for fractional variational problems J. Math. Anal. Appl. 272 368-379
  • [2] Ali HM(2016)A new approach to the Pontryagin maximum principle for nonlinear fractional optimal control problems Math. Methods Appl. Sci. 39 3640-3649
  • [3] Lobo Pereira F(2012)Isoperimetric problems of the calculus of variations with fractional derivatives Acta Math. Sci. Ser. B 32 619-630
  • [4] Gama SMA(2015)A fractional fundamental lemma and a fractional integration by parts formula—Applications to critical points of Bolza functionals and to linear boundary value problems Adv. Differential Equations 20 213-232
  • [5] Almeida R(2013)The DuBois-Reymond fundamental lemma of the fractional calculus of variations and an Euler-Lagrange equation involving only derivatives of Caputo J. Optim. Theory Appl. 156 56-67
  • [6] Ferreira RAC(2011)Fractional calculus of variations for a combined Caputo derivative Fract. Calc. Appl. Anal. 14 523-537
  • [7] Torres DFM(1996)Nonconservative Lagrangian and Hamiltonian mechanics Phys. Rev. E 3 53 1890-1899
  • [8] Bourdin L(undefined)undefined undefined undefined undefined-undefined
  • [9] Idczak D(undefined)undefined undefined undefined undefined-undefined
  • [10] Lazo MJ(undefined)undefined undefined undefined undefined-undefined