Finite element methods for one dimensional elliptic distributed optimal control problems with pointwise constraints on the derivative of the state

被引:0
|
作者
S. C. Brenner
L.-Y. Sung
W. Wollner
机构
[1] Louisiana State University,Department of Mathematics and Center for Computation and Technology
[2] Technische Universität Darmstadt,Department of Mathematics
来源
Optimization and Engineering | 2021年 / 22卷
关键词
Elliptic distributed optimal control problems; Pointwise derivative constraints; Cubic Hermite element;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} finite element methods for one dimensional elliptic distributed optimal control problems with pointwise constraints on the derivative of the state formulated as fourth order variational inequalities for the state variable. For the problem with Dirichlet boundary conditions, we use an existing H52-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\frac{5}{2}-\epsilon }$$\end{document} regularity result for the optimal state to derive O(h12-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^{\frac{1}{2}-\epsilon })$$\end{document} convergence for the approximation of the optimal state in the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document} norm. For the problem with mixed Dirichlet and Neumann boundary conditions, we show that the optimal state belongs to H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^3$$\end{document} under appropriate assumptions on the data and obtain O(h) convergence for the approximation of the optimal state in the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document} norm.
引用
收藏
页码:1989 / 2008
页数:19
相关论文
共 50 条
  • [21] An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints
    Hintermueller, Michael
    Hoppe, Ronald H. W.
    Iliash, Yuri
    Kieweg, Michael
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (03) : 540 - 560
  • [22] Continuity regularity of optimal control solutions to distributed and boundary semilinear elliptic optimal control problems with mixed pointwise control-state constraints
    Nhu, V. H.
    Tuan, N. Q.
    Giang, N. B.
    Huong, N. T. T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 512 (01)
  • [23] Adaptive finite element approximation for distributed elliptic optimal control problems
    Li, R
    Liu, WB
    Ma, HP
    Tang, T
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (05) : 1321 - 1349
  • [24] Adaptive Finite Element Approximation for an Elliptic Optimal Control Problem with Both Pointwise and Integral Control Constraints
    Ning Du
    Liang Ge
    Wenbin Liu
    Journal of Scientific Computing, 2014, 60 : 160 - 183
  • [25] Adaptive Finite Element Approximation for an Elliptic Optimal Control Problem with Both Pointwise and Integral Control Constraints
    Du, Ning
    Ge, Liang
    Liu, Wenbin
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (01) : 160 - 183
  • [26] A cubic C0 interior penalty method for elliptic distributed optimal control problems with pointwise state and control constraints
    Brenner, Susanne C.
    Sung, Li-yeng
    Tan, Zhiyu
    RESULTS IN APPLIED MATHEMATICS, 2020, 7 (07):
  • [27] Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints
    Meyer, C.
    CONTROL AND CYBERNETICS, 2008, 37 (01): : 51 - 83
  • [28] Post-processing procedures for an elliptic distributed optimal control problem with pointwise state constraints
    Brenner, Susanne C.
    Sung, Li-Yeng
    Zhang, Yi
    APPLIED NUMERICAL MATHEMATICS, 2015, 95 : 99 - 117
  • [29] A Symmetric Interior Penalty Method for an Elliptic Distributed Optimal Control Problem with Pointwise State Constraints
    Brenner, Susanne C. C.
    Gedicke, Joscha
    Sung, Li-Yeng
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (03) : 565 - 589
  • [30] Finite element methods for elliptic optimal control problems with boundary observations
    Yan, Ming
    Gong, Wei
    Yan, Ningning
    APPLIED NUMERICAL MATHEMATICS, 2015, 90 : 190 - 207