Finite element methods for one dimensional elliptic distributed optimal control problems with pointwise constraints on the derivative of the state

被引:0
|
作者
S. C. Brenner
L.-Y. Sung
W. Wollner
机构
[1] Louisiana State University,Department of Mathematics and Center for Computation and Technology
[2] Technische Universität Darmstadt,Department of Mathematics
来源
Optimization and Engineering | 2021年 / 22卷
关键词
Elliptic distributed optimal control problems; Pointwise derivative constraints; Cubic Hermite element;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} finite element methods for one dimensional elliptic distributed optimal control problems with pointwise constraints on the derivative of the state formulated as fourth order variational inequalities for the state variable. For the problem with Dirichlet boundary conditions, we use an existing H52-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\frac{5}{2}-\epsilon }$$\end{document} regularity result for the optimal state to derive O(h12-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^{\frac{1}{2}-\epsilon })$$\end{document} convergence for the approximation of the optimal state in the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document} norm. For the problem with mixed Dirichlet and Neumann boundary conditions, we show that the optimal state belongs to H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^3$$\end{document} under appropriate assumptions on the data and obtain O(h) convergence for the approximation of the optimal state in the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2$$\end{document} norm.
引用
收藏
页码:1989 / 2008
页数:19
相关论文
共 50 条