Perfect matchings in random polyomino chain graphs

被引:0
作者
Shouliu Wei
Xiaoling Ke
Fenggen Lin
机构
[1] Minjiang University,Department of Mathematics
[2] Fuzhou University,College of Mathematics and Computer Science
来源
Journal of Mathematical Chemistry | 2016年 / 54卷
关键词
Polyomino chain graph; Perfect matching; Random variable; Expected value;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a (molecule) graph. A perfect matching, or Kekulé structure of G is a set of independent edges covering every vertex exactly once. Enumeration of Kekulé structures of a graph is interest in chemistry, physics and mathematics. In this paper, we focus on the number of perfect matchings in polyomino chain graphs. Simple exact formulas are given for the expected value of the number of perfect matchings in random polyomino chain graphs and for the asymptotic behavior of this expectation. Moreover, the average value of the number of perfect matchings with respect to the set of all polyomino chain graphs with s square-cells.
引用
收藏
页码:690 / 697
页数:7
相关论文
共 48 条
[1]  
Berge C(1981)Combinatorial properties of polyominoes Combinatorics 1 217-224
[2]  
Chen CC(1990)Chessboard domination problems Discrete Math. 86 13-20
[3]  
Chvatal V(2005)Perfect matchings of generalized polyomino graphs Gr. Comb. 21 515-529
[4]  
Soaw CS(1990)On the queen domination problem Discrete Math. 86 21-26
[5]  
Cockayne EJ(1989)The number of perfect matchings in a random hexagonal chain Gr. Theory Notes N. Y. 16 26-28
[6]  
Chen R(1991)Perfect matchings in random hexagonal chain graphs J. Math. Chem. 6 377-383
[7]  
Grinstead CM(1990)Wiener numbers of random bezenoid chains Chem. Phys. Lett. 173 403-408
[8]  
Hahne B(1973)A graphic model of a class of molecules Int. J. Math. Educ. Sci. Technol. 4 233-240
[9]  
Van Stone D(1997)Cell-shedding transformations, equivalence relations, and similarity measures for square-cell configurations Int. Quant. Chem. 62 353-361
[10]  
Gutman I(1996)The diet transform of lattice patterns, equivalence relations, and similarity measures Mol. Eng. 6 415-416