Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces

被引:0
作者
Takao Ohno
Tetsu Shimomura
机构
[1] Oita University,Faculty of Education and Welfare Science
[2] Hiroshima University,Department of Mathematics, Graduate School of Education
来源
Czechoslovak Mathematical Journal | 2014年 / 64卷
关键词
grand Morrey space; variable exponent; non-doubling measure; metric measure space; Riesz potential; maximal operator; Sobolev’s inequality; Trudinger’s exponential inequality; continuity; 31B15; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator on grand Morrey spaces of variable exponents over non-doubling measure spaces. As an application of the boundedness of the maximal operator, we establish Sobolev’s inequality for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. We are also concerned with Trudinger’s inequality and the continuity for Riesz potentials.
引用
收藏
页码:209 / 228
页数:19
相关论文
共 84 条
[1]  
Adams D. R.(1975)A note on Riesz potentials Duke Math. J. 42 765-778
[2]  
Almeida A.(2008)Maximal and potential operators in variable exponent Morrey spaces Georgian Math. J. 15 195-208
[3]  
Hasanov J.(1993)Pointwise inequalities for Sobolev functions and some applications Stud. Math. 106 77-92
[4]  
Samko S. G.(1987)Morrey spaces and Hardy-Littlewood maximal function Rend. Mat. Appl., VII. Ser. 7 273-279
[5]  
Bojarski B.(2003)The maximal function on variable Ann. Acad. Sci. Fenn., Math. 28 223-238
[6]  
Hajłasz P.(2004) spaces Math. Inequal. Appl. 7 245-253
[7]  
Chiarenza F.(2004)Maximal function in generalized Lebesgue spaces Math. Nachr. 268 31-43
[8]  
Frasca M.(1995)Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Stud. Math. 115 151-181
[9]  
Cruz-Uribe D.(1996) and Proc. R. Soc. Edinb., Sect. A 126 995-1009
[10]  
Fiorenza A.(2001)Double exponential integrability, Bessel potentials and embedding theorems Isr. J. Math. 123 61-92