Extensions of representations of integral quadratic forms

被引:0
|
作者
Wai Kiu Chan
Byeong Moon Kim
Myung-Hwan Kim
Byeong-Kweon Oh
机构
[1] Wesleyan University,Department of Mathematics and Computer Science
[2] Kangnung National University,Department of Mathematics
[3] Seoul National University,Department of Mathematical Science
[4] Sejong University,Department of Applied Mathematics
来源
The Ramanujan Journal | 2008年 / 17卷
关键词
Extension of representations; Integral quadratic forms; 11E12; 11E20;
D O I
暂无
中图分类号
学科分类号
摘要
Let N and M be quadratic ℤ-lattices, and K be a sublattice of N. A representation σ:K→M is said to be extensible to N if there exists a representation ρ:N→M such that ρ|K=σ. We prove in this paper a local–global principle for extensibility of representation, which is a generalization of the main theorems on representations by positive definite ℤ-lattices by Hsia, Kitaoka and Kneser (J. Reine Angew. Math. 301:132–141, 1978) and Jöchner and Kitaoka (J. Number Theory 48:88–101, 1994). Applications to almost n-universal lattices and systems of quadratic equations with linear conditions are discussed.
引用
收藏
页码:145 / 153
页数:8
相关论文
共 18 条
  • [1] Extensions of representations of integral quadratic forms
    Chan, Wai Kiu
    Kim, Byeong Moon
    Kim, Myung-Hwan
    Oh, Byeong-Kweon
    RAMANUJAN JOURNAL, 2008, 17 (01) : 145 - 153
  • [2] Representations of integral quadratic forms over dyadic local fields
    Beli, Constantin N.
    ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 12 : 100 - 112
  • [3] On the Exceptional Sets of Integral Quadratic Forms
    Chan, Wai Kiu
    Oh, Byeong-Kweon
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (11) : 8347 - 8369
  • [4] Local conditions for global representations of quadratic forms
    Schulze-Pillot, Rainer
    ACTA ARITHMETICA, 2009, 138 (03) : 289 - 299
  • [5] Incidence graphs and non-negative integral quadratic forms
    Jimenez Gonzalez, Jesus Arturo
    JOURNAL OF ALGEBRA, 2018, 513 : 208 - 245
  • [6] Primitively 2-universal senary integral quadratic forms
    Oh, Byeong-Kweon
    Yoon, Jongheun
    JOURNAL OF NUMBER THEORY, 2024, 264 : 148 - 183
  • [7] Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms
    Colliot-Thelene, Jean-Louis
    Xu, Fei
    COMPOSITIO MATHEMATICA, 2009, 145 (02) : 309 - 363
  • [8] New bounds in reduction theory of indefinite ternary integral quadratic forms
    Li, Han
    Margulis, Gregory A.
    ADVANCES IN MATHEMATICS, 2018, 327 : 410 - 424
  • [9] On indefinite k-universal integral quadratic forms over number fields
    Zilong He
    Yong Hu
    Fei Xu
    Mathematische Zeitschrift, 2023, 304
  • [10] Strong approximation and Hasse principle for integral quadratic forms over affine curves
    Hu, Yong
    Liu, Jing
    Tian, Yisheng
    ACTA ARITHMETICA, 2024, : 277 - 289