Asymptotic behavior of a discrete-time density-dependent SI epidemic model with constant recruitment

被引:0
作者
M. R. S. KulenoviĆ
M. NurkanoviĆ
Abdul-Aziz Yakubu
机构
[1] University of Rhode Island,Department of Mathematics
[2] University of Tuzla,Department of Mathematics
[3] Howard University,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2021年 / 67卷
关键词
Asymptotic behavior; Basic reproductive number; Density-dependent SI model; Invariant rectangles; 39A20; 39A30; 92A15; 92A17;
D O I
暂无
中图分类号
学科分类号
摘要
We use the epidemic threshold parameter, R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {R}}}_{0}$$\end{document}, and invariant rectangles to investigate the global asymptotic behavior of solutions of the density-dependent discrete-time SI epidemic model where the variables Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{n}$$\end{document} and In\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{n}$$\end{document} represent the populations of susceptibles and infectives at time n=0,1,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 0,1,\ldots $$\end{document}, respectively. The model features constant survival “probabilities” of susceptible and infective individuals and the constant recruitment per the unit time interval [n,n+1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[n, n+1]$$\end{document} into the susceptible class. We compute the basic reproductive number, R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {R}}}_{0}$$\end{document}, and use it to prove that independent of positive initial population sizes, R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {R}}}_{0}<1$$\end{document} implies the unique disease-free equilibrium is globally stable and the infective population goes extinct. However, the unique endemic equilibrium is globally stable and the infective population persists whenever R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {R}}}_{0}>1$$\end{document} and the constant survival probability of susceptible is either less than or equal than 1/3 or the constant recruitment is large enough.
引用
收藏
页码:733 / 753
页数:20
相关论文
共 40 条
  • [1] Akram T(2020)An efficient numerical technique for solving time fractional Burgers equation Alex. Eng. J. 59 2201-2220
  • [2] Abbas M(2000)Comparison of deterministic and stochastic SIS and SIR models in discrete-time Math. Biosci. 163 1-113
  • [3] Riaz MB(1991)A discrete-time model with vaccination for measles epidemic Math. Biosci. 105 111-369
  • [4] Ismail AI(1994)Some discrete-time SI, SIR and SIS models Math. Biosci. 124 83-53
  • [5] Mohd AN(1991)Discrete and continuous models of populations and epdiemics J. Math. Syst. Estim. Control 1 335-42
  • [6] Allen L(2001)Dispersal, disease and life-history evolution Math. Biosci. 173 35-4762
  • [7] Burgin AM(2001)Epidemics on attractors Contem. Math. 284 23-333
  • [8] Allen LJS(2001)Discrete-time S-I-S models with complex dynamics Nonlinear Anal. TMA 47 4753-632
  • [9] Jones MA(2013)Qualitative behavior of a host-pathogen model Adv. Differ. Equ. 2013 13-3078
  • [10] Martin CF(2018)New cubic B-spline approximation for solving third order Emden–Flower type equations Appl. Math. Comput. 331 319-407