Application of Cascade Methods as a Universal Object Detection Tool

被引:0
作者
D. P. Matalov
S. A. Usilin
D. P. Nikolaev
V. V. Arlazarov
机构
[1] Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences,
[2] Smart Engines Service LLC,undefined
[3] Institute for Information Transmission Problems of the Russian Academy of Sciences,undefined
来源
Pattern Recognition and Image Analysis | 2023年 / 33卷
关键词
machine learning; Viola–Jones method; scientific school; image processing; edge computing; object detection; image classification; image analysis; statistical recognition methods;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:685 / 698
页数:13
相关论文
共 50 条
  • [1] Application of Cascade Methods as a Universal Object Detection Tool
    Matalov, D. P.
    Usilin, S. A.
    Nikolaev, D. P.
    Arlazarov, V. V.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2023, 33 (04) : 685 - 698
  • [2] Object detection and classification by cascade object training
    Chowdhury, Ahmed Masud
    Jabin, Jafrina
    Efaz, Erteza Tawsif
    Adnan, Md Ehtesham
    Habib, Ashfia Binte
    2020 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS 2020), 2020, : 21 - 25
  • [3] Cascade Linear SVM for Object Detection
    Song, Jinze
    Wu, Tao
    An, Ping
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE FOR YOUNG COMPUTER SCIENTISTS, VOLS 1-5, 2008, : 1755 - 1759
  • [4] Cascade of hierarchical context and appearance for object detection
    Gao, Changxin
    Sang, Nong
    Gao, Jun
    Tang, Qiling
    OPTICAL ENGINEERING, 2010, 49 (03)
  • [5] Confidence evaluation for cascade classifier in object detection
    Liu, Jin
    Tao, WenBing
    Zheng, Han
    MIPPR 2011: AUTOMATIC TARGET RECOGNITION AND IMAGE ANALYSIS, 2011, 8003
  • [6] A COMPARISON OF LATE FUSION METHODS FOR OBJECT DETECTION
    Knauer, Uwe
    Seiffert, Udo
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3297 - 3301
  • [7] Automated Object Detection in Experimental Data Using Combination of Unsupervised and Supervised Methods
    Wu, Yiran
    Wang, Zhen
    Ripplinger, Crystal M.
    Sato, Daisuke
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [8] Universal Optimization Strategies for Object Detection Networks
    Shi, Ziyu
    Gao, Haichang
    Tang, Yiwen
    Zheng, Han
    Kang, Shuai
    Liu, Yi
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (05)
  • [9] Optimal Partition Assignment for Universal Object Detection
    Yang, Yiran
    Sun, Xian
    Diao, Wenhui
    Rong, Xuee
    Yan, Shiyao
    Yin, Dongshuo
    Li, Xinming
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 7582 - 7593
  • [10] Universal adversarial perturbations against object detection
    Li, Debang
    Zhang, Junge
    Huang, Kaiqi
    PATTERN RECOGNITION, 2021, 110