Complexity and inapproximability results for the Power Edge Set problem

被引:0
作者
Sonia Toubaline
Claudia D’Ambrosio
Leo Liberti
Pierre-Louis Poirion
Baruch Schieber
Hadas Shachnai
机构
[1] CNRS,Université Paris
[2] LAMSADE,Dauphine, PSL Research University
[3] CNRS LIX,Computer Science Department
[4] Ecole Polytechnique,undefined
[5] IBM T.J. Watson Research Center,undefined
[6] Technion,undefined
来源
Journal of Combinatorial Optimization | 2018年 / 35卷
关键词
PMU placement problem; Power Edge Set; NP-hardness; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the single channel PMU placement problem called the Power Edge Set problem. In this variant of the PMU placement problem, (single channel) PMUs are placed on the edges of an electrical network. Such a PMU measures the current along the edge on which it is placed and the voltage at its two endpoints. The objective is to find the minimum placement of PMUs in the network that ensures its full observability, namely measurement of all the voltages and currents. We prove that PES is NP-hard to approximate within a factor (1.12)-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}. On the positive side we prove that PES problem is solvable in polynomial time for trees and grids.
引用
收藏
页码:895 / 905
页数:10
相关论文
共 50 条
  • [41] On the complexity of the vector connectivity problem
    Cicalese, Ferdinando
    Milanic, Martin
    Rizzi, Romeo
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 591 : 60 - 71
  • [43] Complexity of the Improper Twin Edge Coloring of Graphs
    Paniz Abedin
    Saieed Akbari
    Marc Demange
    Tınaz Ekim
    [J]. Graphs and Combinatorics, 2017, 33 : 595 - 615
  • [44] Complexity of the Improper Twin Edge Coloring of Graphs
    Abedin, Paniz
    Akbari, Saieed
    Demange, Marc
    Ekim, Tinaz
    [J]. GRAPHS AND COMBINATORICS, 2017, 33 (04) : 595 - 615
  • [45] Complexity of a classical flow restoration problem
    Nace, Dritan
    Pioro, Michal
    Tomaszewski, Artur
    Zotkiewicz, Mateusz
    [J]. NETWORKS, 2013, 62 (02) : 149 - 160
  • [46] On the complexity of the Cable-Trench Problem
    Benedito, Marcelo P. L.
    Pedrosa, Lehilton L. C.
    Rosado, Hugo K. K.
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 340 : 272 - 285
  • [47] On the Complexity of the Problem of Choice of Large Clusters
    Pyatkin, A.V.
    [J]. Journal of Applied and Industrial Mathematics, 2024, 18 (02) : 312 - 315
  • [48] Algorithms and Complexity Results for Persuasive Argumentation
    Kim, Eun Jung
    Ordyniak, Sebastian
    Szeider, Stefan
    [J]. COMPUTATIONAL MODELS OF ARGUMENT: PROCEEDINGS OF COMMA 2010, 2010, 216 : 311 - 322
  • [49] Inapproximability results and suboptimal algorithms for minimum delay cache placement in campus networks with content-centric network routers
    Zhu, Xiaojun
    Chen, Bing
    Shen, Muhui
    Zhao, Yanchao
    [J]. JOURNAL OF SUPERCOMPUTING, 2019, 75 (08) : 5451 - 5474
  • [50] The Parameterized Complexity of the k-Biclique Problem
    Lin, Bingkai
    [J]. JOURNAL OF THE ACM, 2018, 65 (05)