Complexity and inapproximability results for the Power Edge Set problem

被引:0
作者
Sonia Toubaline
Claudia D’Ambrosio
Leo Liberti
Pierre-Louis Poirion
Baruch Schieber
Hadas Shachnai
机构
[1] CNRS,Université Paris
[2] LAMSADE,Dauphine, PSL Research University
[3] CNRS LIX,Computer Science Department
[4] Ecole Polytechnique,undefined
[5] IBM T.J. Watson Research Center,undefined
[6] Technion,undefined
来源
Journal of Combinatorial Optimization | 2018年 / 35卷
关键词
PMU placement problem; Power Edge Set; NP-hardness; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the single channel PMU placement problem called the Power Edge Set problem. In this variant of the PMU placement problem, (single channel) PMUs are placed on the edges of an electrical network. Such a PMU measures the current along the edge on which it is placed and the voltage at its two endpoints. The objective is to find the minimum placement of PMUs in the network that ensures its full observability, namely measurement of all the voltages and currents. We prove that PES is NP-hard to approximate within a factor (1.12)-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}. On the positive side we prove that PES problem is solvable in polynomial time for trees and grids.
引用
收藏
页码:895 / 905
页数:10
相关论文
共 50 条
  • [31] On the complexity of the edge-disjoint min-min problem in planar digraphs
    Guo, Longkun
    Shen, Hong
    THEORETICAL COMPUTER SCIENCE, 2012, 432 : 58 - 63
  • [32] Bypassing UGC from Some Optimal Geometric Inapproximability Results
    Guruswami, Venkatesan
    Raghavendra, Prasad
    Saket, Rishi
    Wu, Yi
    ACM TRANSACTIONS ON ALGORITHMS, 2016, 12 (01)
  • [33] On the complexity of the flow coloring problem
    Campelo, Manoel
    Huiban, Cristiana
    Rodrigues, Carlos Diego
    Sampaio, Rudini M.
    DISCRETE APPLIED MATHEMATICS, 2015, 197 : 75 - 92
  • [34] Parameterized complexity and improved inapproximability for computing the largest j-simplex in a V-polytope
    Koutis, Ioannis
    INFORMATION PROCESSING LETTERS, 2006, 100 (01) : 8 - 13
  • [35] Inapproximability results for routing and wavelength assignment in wavelength division multiplexing optical networks
    Li, KQ
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL VI, PROCEEDINGS: IMAGE, ACOUSTIC, SIGNAL PROCESSING AND OPTICAL SYSTEMS, TECHNOLOGIES AND APPLICATIONS, 2004, : 119 - 124
  • [36] On the complexity of the highway problem
    Elbassioni, Khaled
    Raman, Rajiv
    Ray, Saurabh
    Sitters, Rene
    THEORETICAL COMPUTER SCIENCE, 2012, 460 : 70 - 77
  • [37] On the complexity of the storyplan problem
    Binucci, Carla
    Di Giacomo, Emilio
    Lenhart, William J.
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    Nollenburg, Martin
    Symvonis, Antonios
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2024, 139
  • [38] On the Complexity of the Storyplan Problem
    Binucci, Carla
    Di Giacomo, Emilio
    Lenhart, William J.
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    Noellenburg, Martin
    Symvonis, Antonios
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2022, 2023, 13764 : 304 - 318
  • [39] The Complexity of the Empire Colouring Problem
    McGrae, Andrew R. A.
    Zito, Michele
    ALGORITHMICA, 2014, 68 (02) : 483 - 503
  • [40] The Complexity of the Empire Colouring Problem
    Andrew R. A. McGrae
    Michele Zito
    Algorithmica, 2014, 68 : 483 - 503