Complexity and inapproximability results for the Power Edge Set problem

被引:0
|
作者
Sonia Toubaline
Claudia D’Ambrosio
Leo Liberti
Pierre-Louis Poirion
Baruch Schieber
Hadas Shachnai
机构
[1] CNRS,Université Paris
[2] LAMSADE,Dauphine, PSL Research University
[3] CNRS LIX,Computer Science Department
[4] Ecole Polytechnique,undefined
[5] IBM T.J. Watson Research Center,undefined
[6] Technion,undefined
来源
Journal of Combinatorial Optimization | 2018年 / 35卷
关键词
PMU placement problem; Power Edge Set; NP-hardness; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the single channel PMU placement problem called the Power Edge Set problem. In this variant of the PMU placement problem, (single channel) PMUs are placed on the edges of an electrical network. Such a PMU measures the current along the edge on which it is placed and the voltage at its two endpoints. The objective is to find the minimum placement of PMUs in the network that ensures its full observability, namely measurement of all the voltages and currents. We prove that PES is NP-hard to approximate within a factor (1.12)-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}. On the positive side we prove that PES problem is solvable in polynomial time for trees and grids.
引用
收藏
页码:895 / 905
页数:10
相关论文
共 50 条
  • [21] Inapproximability Results for Scheduling with Interval and Resource Restrictions
    Maack, Marten
    Jansen, Klaus
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [22] Inapproximability results for equations over infinite groups
    Chen, WenBin
    Yin, Dengpan
    Chen, Zhengzhang
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (26-28) : 2513 - 2519
  • [23] Inapproximability results for equations over finite groups
    Engebretsen, L
    Holmerin, J
    Russell, A
    THEORETICAL COMPUTER SCIENCE, 2004, 312 (01) : 17 - 45
  • [24] On the inapproximability of the exemplar conserved interval distance problem of genomes
    Chen, Zhixiang
    Fowler, Richard H.
    Fu, Bin
    Zhu, Binhai
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2008, 15 (02) : 201 - 221
  • [25] Power Edge Set and Zero Forcing Set Remain Difficult in Cubic Graphs
    Cazals, Pierre
    Darties, Benoit
    Chateau, Annie
    Giroudeau, Rodolphe
    Weller, Mathias
    COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 122 - 135
  • [26] On the inapproximability of the exemplar conserved interval distance problem of genomes
    Zhixiang Chen
    Richard H. Fowler
    Bin Fu
    Binhai Zhu
    Journal of Combinatorial Optimization, 2008, 15 : 201 - 221
  • [27] On the Hardness and Inapproximability of Optimization Problems on Power Law Graphs
    Shen, Yilin
    Nguyen, Dung T.
    Thai, My T.
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PT 1, 2010, 6508 : 197 - 211
  • [28] Inapproximability results and bounds for the Helly and Radon numbers of a graph
    Dourado, Mitre C.
    da Silva, Aline R.
    DISCRETE APPLIED MATHEMATICS, 2017, 232 : 134 - 141
  • [29] Inapproximability Results for Wavelength Assignment in WDM Optical Networks
    Li, Keqin
    INFORMATICA, 2010, 21 (02) : 205 - 214
  • [30] Inapproximability and a polynomially solvable special case of a network improvement problem
    Zhang, JZ
    Yang, XG
    Cai, MC
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 155 (01) : 251 - 257