Complexity and inapproximability results for the Power Edge Set problem

被引:0
|
作者
Sonia Toubaline
Claudia D’Ambrosio
Leo Liberti
Pierre-Louis Poirion
Baruch Schieber
Hadas Shachnai
机构
[1] CNRS,Université Paris
[2] LAMSADE,Dauphine, PSL Research University
[3] CNRS LIX,Computer Science Department
[4] Ecole Polytechnique,undefined
[5] IBM T.J. Watson Research Center,undefined
[6] Technion,undefined
来源
Journal of Combinatorial Optimization | 2018年 / 35卷
关键词
PMU placement problem; Power Edge Set; NP-hardness; Inapproximability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the single channel PMU placement problem called the Power Edge Set problem. In this variant of the PMU placement problem, (single channel) PMUs are placed on the edges of an electrical network. Such a PMU measures the current along the edge on which it is placed and the voltage at its two endpoints. The objective is to find the minimum placement of PMUs in the network that ensures its full observability, namely measurement of all the voltages and currents. We prove that PES is NP-hard to approximate within a factor (1.12)-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, for any ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon > 0$$\end{document}. On the positive side we prove that PES problem is solvable in polynomial time for trees and grids.
引用
收藏
页码:895 / 905
页数:10
相关论文
共 50 条
  • [1] Complexity and inapproximability results for the Power Edge Set problem
    Toubaline, Sonia
    D'Ambrosio, Claudia
    Liberti, Leo
    Poirion, Pierre-Louis
    Schieber, Baruch
    Shachnai, Hadas
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (03) : 895 - 905
  • [2] Complexity and lowers bounds for Power Edge Set Problem
    Darties, Benoit
    Champseix, Nicolas
    Chateau, Annie
    Giroudeau, Rodolphe
    Weller, Mathias
    JOURNAL OF DISCRETE ALGORITHMS, 2018, 52-53 : 70 - 91
  • [3] The Power Edge Set Problem
    Poirion, Pierre-Louis
    Toubaline, Sonia
    D'Ambrosio, Claudia
    Liberti, Leo
    NETWORKS, 2016, 68 (02) : 104 - 120
  • [4] Inapproximability of the Minimum Biclique Edge Partition Problem
    Otsuki, Hideaki
    Hirata, Tomio
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (02): : 290 - 292
  • [5] Inapproximability of dominating set on power law graphs
    Gast, Mikael
    Hauptmann, Mathias
    Karpinski, Marek
    THEORETICAL COMPUTER SCIENCE, 2015, 562 : 436 - 452
  • [6] Inapproximability results for the lateral gene transfer problem
    Dasgupta, Bhaskar
    Ferrarini, Sergio
    Gopalakrishnan, Uthra
    Paryani, Nisha Raj
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2006, 11 (04) : 387 - 405
  • [7] Inapproximability results for the lateral gene transfer problem
    Bhaskar Dasgupta
    Sergio Ferrarini
    Uthra Gopalakrishnan
    Nisha Raj Paryani
    Journal of Combinatorial Optimization, 2006, 11 : 387 - 405
  • [8] Complexity and Inapproximability Results for Parallel Task Scheduling and Strip Packing
    Sören Henning
    Klaus Jansen
    Malin Rau
    Lars Schmarje
    Theory of Computing Systems, 2020, 64 : 120 - 140
  • [9] Complexity and Inapproximability Results for Parallel Task Scheduling and Strip Packing
    Henning, Soeren
    Jansen, Klaus
    Rau, Malin
    Schmarje, Lars
    THEORY OF COMPUTING SYSTEMS, 2020, 64 (01) : 120 - 140
  • [10] Inapproximability of the kidney exchange problem
    Biro, Peter
    Cechlarova, Katarina
    INFORMATION PROCESSING LETTERS, 2007, 101 (05) : 199 - 202