Head and Tail Speeds of Mean Curvature Flow with Forcing

被引:0
|
作者
Hongwei Gao
Inwon Kim
机构
[1] University of California,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the large time behavior of interfaces moving with motion law V=-κ+g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V = -\,\kappa + g(x)$$\end{document}, where g is positive, Lipschitz and Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^n$$\end{document}-periodic. We show that the behavior of the interface can be characterized by its head and tail speeds s¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{s}}$$\end{document} and s̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{s}$$\end{document}, which only depend on its overall direction of propagation ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. We discuss the large time behavior of the moving interface in terms of s¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{s}}$$\end{document} and s̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{s}$$\end{document}, which is shown to vary continuously in ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. In the laminar setting we show that when s¯>s̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{s}}>\underline{s}$$\end{document} there exists an unbounded stationary solution as well as localized traveling waves with different speeds.
引用
收藏
页码:287 / 354
页数:67
相关论文
共 50 条
  • [41] Singularities of mean curvature flow
    Yuanlong Xin
    Science China Mathematics, 2021, 64 : 1349 - 1356
  • [42] Width and mean curvature flow
    Colding, Tobias H.
    Minicozzi, William P., II
    GEOMETRY & TOPOLOGY, 2008, 12 : 2517 - 2535
  • [43] Riemannian mean curvature flow
    Estépar, RSJ
    Haker, S
    Westin, CF
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 613 - 620
  • [44] On the extension of the mean curvature flow
    Le, Nam Q.
    Sesum, Natasa
    MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (3-4) : 583 - 604
  • [45] The mean curvature flow on solvmanifolds
    Arroyo, Romina M.
    Ovando, Gabriela P.
    Perales, Raquel
    Saez, Mariel
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [46] Spacelike Mean Curvature Flow
    Ben Lambert
    Jason D. Lotay
    The Journal of Geometric Analysis, 2021, 31 : 1291 - 1359
  • [47] Nucleation and mean curvature flow
    Visintin, A
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (1-2) : 17 - 53
  • [48] Hermitian mean curvature flow
    Yang, Jieming
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2024,
  • [49] Mean Curvature Flow of Mean Convex Hypersurfaces
    Haslhofer, Robert
    Kleiner, Bruce
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2017, 70 (03) : 511 - 546
  • [50] Minimizing Movements for the Generalized Power Mean Curvature Flow Generalized Power Mean Curvature Flow
    Bellettini, Giovanni
    Kholmatov, Shokhrukh Yu.
    MILAN JOURNAL OF MATHEMATICS, 2024,