In this paper, we investigate the large time behavior of interfaces moving with motion law V=-κ+g(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V = -\,\kappa + g(x)$$\end{document}, where g is positive, Lipschitz and Zn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {Z}}^n$$\end{document}-periodic. We show that the behavior of the interface can be characterized by its head and tail speeds s¯\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\bar{s}}$$\end{document} and s̲\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\underline{s}$$\end{document}, which only depend on its overall direction of propagation ν\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu $$\end{document}. We discuss the large time behavior of the moving interface in terms of s¯\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\bar{s}}$$\end{document} and s̲\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\underline{s}$$\end{document}, which is shown to vary continuously in ν\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu $$\end{document}. In the laminar setting we show that when s¯>s̲\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\bar{s}}>\underline{s}$$\end{document} there exists an unbounded stationary solution as well as localized traveling waves with different speeds.
机构:
Univ Nacl Cordoba, FAMAF, Av Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, Argentina
Univ Nacl Cordoba, CIEM, Av Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, ArgentinaUniv Nacl Cordoba, FAMAF, Av Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, Argentina
Arroyo, Romina M.
Ovando, Gabriela P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Rosario, Dept Matemat, ECEN FCEIA, Pellegrini 250, RA-2000 Rosario, Santa Fe, ArgentinaUniv Nacl Cordoba, FAMAF, Av Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, Argentina
Ovando, Gabriela P.
Perales, Raquel
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Invest Matemat, Jalisco S-N, Guanajuato 36023, Gto, MexicoUniv Nacl Cordoba, FAMAF, Av Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, Argentina
Perales, Raquel
Saez, Mariel
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Chile, Fac Matemat, Av Vicuna Mackenna 4860, Santiago 690444, ChileUniv Nacl Cordoba, FAMAF, Av Medina Allende S-N,Ciudad Univ,X5000HUA, Cordoba, Argentina
Saez, Mariel
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA,
2024,
30
(02):