Head and Tail Speeds of Mean Curvature Flow with Forcing

被引:0
|
作者
Hongwei Gao
Inwon Kim
机构
[1] University of California,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the large time behavior of interfaces moving with motion law V=-κ+g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V = -\,\kappa + g(x)$$\end{document}, where g is positive, Lipschitz and Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^n$$\end{document}-periodic. We show that the behavior of the interface can be characterized by its head and tail speeds s¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{s}}$$\end{document} and s̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{s}$$\end{document}, which only depend on its overall direction of propagation ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. We discuss the large time behavior of the moving interface in terms of s¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{s}}$$\end{document} and s̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{s}$$\end{document}, which is shown to vary continuously in ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. In the laminar setting we show that when s¯>s̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{s}}>\underline{s}$$\end{document} there exists an unbounded stationary solution as well as localized traveling waves with different speeds.
引用
收藏
页码:287 / 354
页数:67
相关论文
共 50 条
  • [31] Singularities of mean curvature flow
    Yuanlong Xin
    Science China(Mathematics), 2021, 64 (07) : 1349 - 1356
  • [32] Discrete mean curvature flow
    Imiya, A
    Eckhardt, U
    SCALE-SPACE THEORIES IN COMPUTER VISION, 1999, 1682 : 477 - 482
  • [33] Mean curvature flow with obstacles
    Almeida, L.
    Chambolle, A.
    Novaga, M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (05): : 667 - 681
  • [34] Spacelike Mean Curvature Flow
    Lambert, Ben
    Lotay, Jason D.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 1291 - 1359
  • [35] MEAN CURVATURE FLOW WITH SURGERY
    Haslhofer, Robert
    Kleiner, Bruce
    DUKE MATHEMATICAL JOURNAL, 2017, 166 (09) : 1591 - 1626
  • [36] Mean Curvature Flow in -manifolds
    Schaefer, Lars
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (03) : 231 - 255
  • [37] Gaussian mean curvature flow
    Alexander A. Borisenko
    Vicente Miquel
    Journal of Evolution Equations, 2010, 10 : 413 - 423
  • [38] Hyperbolic flow by mean curvature
    Rotstein, Horacio G.
    Brandon, Simon
    Novick-Cohen, Amy
    Journal of Crystal Growth, 1999, 198-199 (pt 2): : 1256 - 1261
  • [39] Hyperbolic flow by mean curvature
    Rotstein, HG
    Brandon, S
    Novick-Cohen, A
    JOURNAL OF CRYSTAL GROWTH, 1999, 198 : 1256 - 1261
  • [40] Skew mean curvature flow
    Song, Chong
    Sun, Jun
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (01)