Head and Tail Speeds of Mean Curvature Flow with Forcing

被引:0
|
作者
Hongwei Gao
Inwon Kim
机构
[1] University of California,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the large time behavior of interfaces moving with motion law V=-κ+g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V = -\,\kappa + g(x)$$\end{document}, where g is positive, Lipschitz and Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}^n$$\end{document}-periodic. We show that the behavior of the interface can be characterized by its head and tail speeds s¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{s}}$$\end{document} and s̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{s}$$\end{document}, which only depend on its overall direction of propagation ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. We discuss the large time behavior of the moving interface in terms of s¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{s}}$$\end{document} and s̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underline{s}$$\end{document}, which is shown to vary continuously in ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. In the laminar setting we show that when s¯>s̲\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{s}}>\underline{s}$$\end{document} there exists an unbounded stationary solution as well as localized traveling waves with different speeds.
引用
收藏
页码:287 / 354
页数:67
相关论文
共 50 条
  • [21] Spacelike translating solitons of mean curvature flow with forcing term in Lorentzian product spaces
    Batista, Marcio
    Carvalho, Pedro
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
  • [22] MEAN CURVATURE FLOW
    Colding, Tobias Holck
    Minicozzi, William P., II
    Pedersen, Erik Kjaer
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 297 - 333
  • [23] The mean curvature at the first singular time of the mean curvature flow
    Le, Nam Q.
    Sesum, Natasa
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (06): : 1441 - 1459
  • [24] EXISTENCE OF MEAN CURVATURE FLOW SINGULARITIES WITH BOUNDED MEAN CURVATURE
    Stolarski, Maxwell
    DUKE MATHEMATICAL JOURNAL, 2023, 172 (07) : 1235 - 1292
  • [25] Mean curvature flow with pinched curvature integral
    Han, Yongheng
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2025, 99
  • [26] Singularities of mean curvature flow
    Xin, Yuanlong
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (07) : 1349 - 1356
  • [27] The hyperbolic mean curvature flow
    LeFloch, Philippe G.
    Smoczyk, Knut
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (06): : 591 - 614
  • [28] Hyperbolic mean curvature flow
    He, Chun-Lei
    Kong, De-Xing
    Liu, Kefeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 373 - 390
  • [29] On the extension of the mean curvature flow
    Nam Q. Le
    Natasa Sesum
    Mathematische Zeitschrift, 2011, 267 : 583 - 604
  • [30] Gaussian mean curvature flow
    Borisenko, Alexander A.
    Miquel, Vicente
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) : 413 - 423