Graphs with Diameter 2 and Large Total Domination Number

被引:0
作者
Artūras Dubickas
机构
[1] Vilnius University,Institute of Mathematics, Faculty of Mathematics and Informatics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Graphs with diameter 2; Total domination number; Random graph; Primary 05C69; Secondary 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show that for each sufficiently large n there exist graphs G of order n and diameter 2 whose total domination number γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _t(G)$$\end{document} is greater than (3nlogn)/8-n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{(3n\log n)/8}-\sqrt{n}$$\end{document}. On the other hand, it is shown that the total domination number of a graph of order n⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geqslant 3$$\end{document} and diameter 2 is always less than (nlogn)/2+n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{(n\log n)/2}+\sqrt{n/2}$$\end{document}.
引用
收藏
页码:271 / 279
页数:8
相关论文
共 35 条
  • [11] Desormeaux WJ(2014)On Util. Math. 94 315-328
  • [12] Haynes TW(2008)-total domination in graphs Discuss. Math. Graph Theory 28 267-284
  • [13] Henning MA(2016)A transition from total domination in graphs to transversals in hypergraphs Discrete Math. Algorithms Appl. 8 1650055-871
  • [14] Yeo A(2016)The domination number of a random graph J. Comb. Optim. 32 855-undefined
  • [15] Desormeaux WJ(2001)Secure domination and secure total domination in graphs Electron. J. Combin. 8 13-undefined
  • [16] Gibson PE(2017)-Eternal total domination in graphs Discrete Math. Algorithms Appl. 9 1750009-undefined
  • [17] Haynes TW(undefined)Signed total Roman domination in graphs undefined undefined undefined-undefined
  • [18] Duginov O(undefined)On the domination number of a random graph undefined undefined undefined-undefined
  • [19] Glebov R(undefined)Disjunctive total domination in permutation graphs undefined undefined undefined-undefined
  • [20] Liebenau A(undefined)undefined undefined undefined undefined-undefined