Graphs with Diameter 2 and Large Total Domination Number

被引:0
作者
Artūras Dubickas
机构
[1] Vilnius University,Institute of Mathematics, Faculty of Mathematics and Informatics
来源
Graphs and Combinatorics | 2021年 / 37卷
关键词
Graphs with diameter 2; Total domination number; Random graph; Primary 05C69; Secondary 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show that for each sufficiently large n there exist graphs G of order n and diameter 2 whose total domination number γt(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _t(G)$$\end{document} is greater than (3nlogn)/8-n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{(3n\log n)/8}-\sqrt{n}$$\end{document}. On the other hand, it is shown that the total domination number of a graph of order n⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geqslant 3$$\end{document} and diameter 2 is always less than (nlogn)/2+n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{(n\log n)/2}+\sqrt{n/2}$$\end{document}.
引用
收藏
页码:271 / 279
页数:8
相关论文
共 35 条
  • [1] Akhbari MH(2016)Bounds on weak and strong total domination number in graphs Electron. J. Graph Theory Appl. (EJGTA) 4 111-118
  • [2] Rad NJ(2017)Total Period. Math. Hung. 75 255-267
  • [3] Bermudo S(2017)-domination in Cartesian product graphs Discrete Appl. Math. 217 718-721
  • [4] Sanchéz JL(1980)A note on Networks 10 211-219
  • [5] Sigaretta JM(2014)-total domination in cubic graphs J. Graph Theory 75 91-103
  • [6] Chen X-G(2015)Total domination in graphs Quaest. Math. 38 563-572
  • [7] Gao T(2017)Total domination in graphs with diameter Discrete Appl. Math. 222 97-108
  • [8] Cockayne EJ(2015)Bounds on the global domination number SIAM J. Discrete Math. 29 1186-1206
  • [9] Dawes RM(2012)Secure total domination in graphs: bounds and complexity Discrete. Appl. Math. 160 1143-1151
  • [10] Hedetniemi ST(2007)On the concentration of the domination number of the random graph Quaest. Math. 30 417-436