A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates

被引:0
作者
Jianguo Huang
Xuehai Huang
机构
[1] Shanghai Jiao Tong University,Key Laboratory of Scientific and Engineering Computing (Ministry of Education), School of Mathematical Sciences
[2] Shanghai University of Finance and Economics,School of Mathematics
[3] Wenzhou University,Department of Mathematics
来源
Journal of Scientific Computing | 2019年 / 78卷
关键词
Kirchhoff plates; Hybridizable discontinuous Galerkin method; Inf-sup condition; Superconvergence; Postprocessing;
D O I
暂无
中图分类号
学科分类号
摘要
With the introduction of numerical traces respectively related to the normal bending moment, the twisting moment and the effective transverse shear force, and based on the Hermann–Miyoshi formulation, this paper proposes a hybridizable discontinuous Galerkin (HDG) method for Kirchhoff plate bending problems. The piecewise polynomials of degrees k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} and k are used to approximate the moment and the deflection, respectively. The optimal and superconvergent error estimates are derived under minimal regularity assumptions on the exact solution. The key ingredients in the analysis include the derivation of a discrete inf-sup condition and some local lower bound estimates of a posteriori error analysis. The significant feature of the HDG method is superconvergence as well as the low number of globally coupled degrees of freedom associated with Lagrange multipliers. Furthermore, a new discrete deflection is constructed by postprocessing the solution of the HDG method, which superconverges to the deflection with order k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document} in broken H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm. Finally, some numerical results are shown to demonstrate the theoretical results.
引用
收藏
页码:290 / 320
页数:30
相关论文
共 67 条
[11]  
Gudi T(2002)The Hellan–Herrmann–Johnson method: some new error estimates and postprocessing Comput. Methods Appl. Mech. Eng. 191 3669-3750
[12]  
Sung LY(1980)Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity RAIRO Anal. Numér. 14 249-277
[13]  
Brenner SC(2009)Error estimates for mixed methods IMA J. Numer. Anal. 29 573-594
[14]  
Sung LY(2010)Discontinuous Galerkin methods for the biharmonic problem Math. Comput. 79 2169-2189
[15]  
Cockburn B(2010)A new error analysis for discontinuous finite element methods for linear elliptic problems Calcolo 47 239-261
[16]  
Dong B(2008)Some nonstandard error analysis of discontinuous Galerkin methods for elliptic problems J. Sci. Comput. 37 139-161
[17]  
Guzmán J(1967)Mixed discontinuous Galerkin finite element method for the biharmonic equation J. Eng. Mech. Div. ASCE 93 49-83
[18]  
Cockburn B(2010)Finite element bending analysis for plates Comput. Methods Appl. Mech. Eng. 199 1446-1454
[19]  
Dong B(2005)A new Sci. China Ser. A 48 986-1007
[20]  
Guzmán J(2006) discontinuous Galerkin method for Kirchhoff plates Sci. China Ser. A 49 109-129