A Hybridizable Discontinuous Galerkin Method for Kirchhoff Plates

被引:0
作者
Jianguo Huang
Xuehai Huang
机构
[1] Shanghai Jiao Tong University,Key Laboratory of Scientific and Engineering Computing (Ministry of Education), School of Mathematical Sciences
[2] Shanghai University of Finance and Economics,School of Mathematics
[3] Wenzhou University,Department of Mathematics
来源
Journal of Scientific Computing | 2019年 / 78卷
关键词
Kirchhoff plates; Hybridizable discontinuous Galerkin method; Inf-sup condition; Superconvergence; Postprocessing;
D O I
暂无
中图分类号
学科分类号
摘要
With the introduction of numerical traces respectively related to the normal bending moment, the twisting moment and the effective transverse shear force, and based on the Hermann–Miyoshi formulation, this paper proposes a hybridizable discontinuous Galerkin (HDG) method for Kirchhoff plate bending problems. The piecewise polynomials of degrees k-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-1$$\end{document} and k are used to approximate the moment and the deflection, respectively. The optimal and superconvergent error estimates are derived under minimal regularity assumptions on the exact solution. The key ingredients in the analysis include the derivation of a discrete inf-sup condition and some local lower bound estimates of a posteriori error analysis. The significant feature of the HDG method is superconvergence as well as the low number of globally coupled degrees of freedom associated with Lagrange multipliers. Furthermore, a new discrete deflection is constructed by postprocessing the solution of the HDG method, which superconverges to the deflection with order k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+1$$\end{document} in broken H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm. Finally, some numerical results are shown to demonstrate the theoretical results.
引用
收藏
页码:290 / 320
页数:30
相关论文
共 67 条
[1]  
An R(2015)A compact Numer. Methods Partial Differ. Equ. 31 1265-1287
[2]  
Huang X(1980) discontinuous Galerkin method for Kirchhoff plates Math. Comput. 35 1039-1062
[3]  
Babuška I(1973)Analysis of mixed methods using mesh dependent norms SIAM J. Numer. Anal. 10 863-875
[4]  
Osborn J(2011)Nonconforming elements in the finite element method with penalty SIAM J. Numer. Anal. 49 789-817
[5]  
Pitkäranta J(2010)A mixed method for the biharmonic problem based on a system of first-order equations Electron. Trans. Numer. Anal. 37 214-238
[6]  
Babuška I(2005)A weakly over-penalized symmetric interior penalty method for the biharmonic problem J. Sci. Comput. 22 83-118
[7]  
Zlámal M(2008) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains Math. Comput. 77 1887-1916
[8]  
Behrens EM(2009)A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems J. Sci. Comput. 40 141-187
[9]  
Guzmán J(2009)A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems SIAM J. Numer. Anal. 47 1319-1365
[10]  
Brenner SC(1989)Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems Math. Comput. 52 17-29