Boundedness of Sublinear Operators and Commutators on Generalized Morrey Spaces

被引:0
作者
Vagif S. Guliyev
Seymur S. Aliyev
Turhan Karaman
Parviz S. Shukurov
机构
[1] Ahi Evran University,Department of Mathematics
[2] Academy of Sciences of Azerbaijan,Institute of Mathematics and Mechanics
来源
Integral Equations and Operator Theory | 2011年 / 71卷
关键词
Primary 42B20; 42B25; 42B35; Sublinear operator; generalized Morrey space; Calderón–Zygmund operator; Riesz potential operator; fractional maximal operator; commutator; BMO; Littlewood–Paley operator; Marcinkiewicz operator; Bochner–Riesz operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the authors study the boundedness for a large class of sublinear operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{\alpha}, \alpha \in [0,n)}$$\end{document} generated by Calderón–Zygmund operators (α = 0) and generated by Riesz potential operator (α > 0) on generalized Morrey spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{p,\varphi}}$$\end{document} . As an application of the above result, the boundeness of the commutator of sublinear operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{b,\alpha}, \alpha \in [0,n)}$$\end{document} on generalized Morrey spaces is also obtained. In the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b \in BMO}$$\end{document} and Tb,α is a sublinear operator, we find the sufficient conditions on the pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\varphi_1,\varphi_2)}$$\end{document} which ensures the boundedness of the operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_{b,\alpha}, \alpha \in [0,n)}$$\end{document} from one generalized Morrey space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{p,\varphi_1}}$$\end{document} to another \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{q,\varphi_2}}$$\end{document} with 1/p − 1/q = α/n. In all the cases the conditions for the boundedness are given in terms of Zygmund-type integral inequalities on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\varphi_1,\varphi_2)}$$\end{document} , which do not assume any assumption on monotonicity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi_1, \, \varphi_2}$$\end{document} in r. Conditions of these theorems are satisfied by many important operators in analysis, in particular, Littlewood–Paley operator, Marcinkiewicz operator and Bochner–Riesz operator.
引用
收藏
相关论文
共 67 条
[1]  
Adams D.R.(1975)A note on Riesz potentials Duke Math. J. 42 765-778
[2]  
Burenkov V.I.(2006)Necessary and sufficient conditions for the boundedness of the fractional maximal operator in the local Morrey-type spaces Dokl. Akad. Nauk. 74 540-544
[3]  
Guliyev H.V.(2007)Necessary and sufficient conditions for boundedness of the fractional maximal operators in the local Morrey-type spaces J. Comput. Appl. Math. 208 280-301
[4]  
Guliyev V.S.(2009)Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces Potential Anal. 30 211-249
[5]  
Burenkov V.I.(2010)Boundedness of the fractional maximal operator in local Morrey-type spaces Complex Var. Elliptic Equ. 55 739-758
[6]  
Guliyev H.V.(2011)Boundedness of the fractional maximal operator in local Morrey-type spaces Potential Anal. 35 67-87
[7]  
Guliyev V.S.(1982)A note on commutators Indiana Univ. Math. J. 23 7-16
[8]  
Burenkov V.I.(2001)On embeddings between classical Lorentz spaces Math. Inequal. Appl. 4 397-428
[9]  
Guliyev V.S.(1987)Morrey spaces and Hardy-Littlewood maximal function Rend Mat. 7 273-279
[10]  
Burenkov V.(1991)Interior Ricerche Mat. 40 149-168