Self-healing action of permeable crystalline coating on pores and cracks in cement-based materials

被引:0
|
作者
Wang Guiming
Yu Jianying
机构
[1] Wuhan University of Technology,School of Materials Science and Engineering
来源
Journal of Wuhan University of Technology-Mater. Sci. Ed. | 2005年 / 20卷 / 1期
关键词
cement-based materials; self-healing; impermeability; crystalline;
D O I
10.1007/BF02870882
中图分类号
学科分类号
摘要
The self-healing action of a permeable crystalline coating on the porous mortar was investigated by two times impermeability test. Moreover, the self-healing mechanism of cement-based materials with the permeable crystalline coating was studied by SEM. The results indicate that the permeable crystalline coating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or cracks produced by freeze-thaw cycles. Therefore, cement-based materials can be improved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great quantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids.
引用
收藏
页码:89 / 92
页数:3
相关论文
共 50 条
  • [31] Visualization and quantification of crack self-healing in cement-based materials incorporating different minerals
    Suleiman, Ahmed R.
    Nelson, Andrew J.
    Nehdi, Moncef L.
    CEMENT & CONCRETE COMPOSITES, 2019, 103 : 49 - 58
  • [32] Influence of bacterial self-healing agent on early age performance of cement-based materials
    Su, Yilin
    Feng, Jianhang
    Jin, Peng
    Qian, Chunxiang
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 218 : 224 - 234
  • [33] Effect of pH-Responsive Superabsorbent Polymers on the Self-Healing of Cement-Based Materials
    Yang S.
    Zhang S.
    Niu L.
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2025, 49 (1) : 215 - 238
  • [34] Potential application of mineral capsules in self-healing cement-based materials under groundwater containing sulfate
    Li, Jinglu
    Bai, Shuai
    Guan, Xinchun
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 457
  • [35] The Application of Self-Healing Microcapsule Technology in the Field of Cement-Based Materials: A Review and Prospect
    Liu, Bo
    Wu, Mingli
    Du, Wei
    Jiang, Lu
    Li, Hongjun
    Wang, Luoxin
    Li, Jinhui
    Zuo, Danying
    Ding, Qingjun
    POLYMERS, 2023, 15 (12)
  • [36] Experimental analysis of self-healing cement-based materials incorporating extruded cementitious hollow tubes
    Formia, Alessandra
    Irico, Sara
    Bertola, Federica
    Canonico, Fulvio
    Antonaci, Paola
    Pugno, Nicola Maria
    Tulliani, Jean-Marc
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2016, 27 (19) : 2633 - 2652
  • [37] Investigation of migration and self-healing ability of ion chelator in cement-based materials by a novel method
    Wang, Ruiyang
    Yu, Jianying
    Gu, Shunjie
    He, Peng
    Han, Xiaobin
    Liu, Quantao
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 262
  • [38] Low alkali sulpho-aluminate cement encapsulated microbial spores for self-healing cement-based materials
    Zheng, Tianwen
    Su, Yilin
    Qian, Chunxiang
    Zhou, Hengyi
    BIOCHEMICAL ENGINEERING JOURNAL, 2020, 163
  • [39] Assessment of self-healing performance of cement-based materials incorporating ion chelator and industrial wastes
    Wang, Ruiyang
    Yu, Jianying
    Liu, Quantao
    Kuang, Dongliang
    SMART MATERIALS AND STRUCTURES, 2024, 33 (03)
  • [40] Development of a 2-phase bio-additive for self-healing cement-based materials
    Tezer, Mustafa Mert
    Bundur, Zeynep Basaran
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2021, 36 (03): : 1172 - 1184