Complex symmetric Toeplitz operators on the Hardy spaces and Bergman spaces

被引:0
作者
Hu, Xiaohe [1 ]
Wang, Cui [1 ]
Xu, Zhiyuan [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Tianjin Univ, Sch Math, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex symmetry; Toeplitz operator; Hardy spaces; Bergman spaces;
D O I
10.1007/s43034-024-00352-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first completely characterize the complex symmetric Toeplitz operators T phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\varphi $$\end{document} on the Hardy spaces H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2({\mathbb {D}})$$\end{document} with conjugations Cpi,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_p<^>{i,j}$$\end{document} and Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_n$$\end{document}. Next, we give a method to determine the coefficients of phi(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (z)$$\end{document} when T phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\varphi $$\end{document} is complex symmetric on H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2({\mathbb {D}})$$\end{document} with the conjugation C sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_\sigma $$\end{document}, which partially solves a problem raised by [2]. Finally, we consider the complex symmetric Toeplitz operators T phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\varphi $$\end{document} on the weighted Bergman spaces A2(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A<^>2({\mathbb {B}}_{n})$$\end{document} and the pluriharmonic Bergman spaces b2(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b<^>2({\mathbb {B}}_{n})$$\end{document} with conjugations CV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_V$$\end{document}, where V is a symmetric permutation matrix.
引用
收藏
页数:18
相关论文
共 13 条
  • [1] Complex Symmetric Toeplitz Operators
    Bu, Qinggang
    Chen, Yong
    Zhu, Sen
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (02)
  • [2] Characterization of C-symmetric Toeplitz operators for a class of conjugations in Hardy spaces
    Chattopadhyay, Arup
    Das, Soma
    Pradhan, Chandan
    Sarkar, Srijan
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (12) : 2026 - 2048
  • [3] Complex symmetry of Toeplitz operators
    Chen, Yong
    Lee, Young Joo
    Zhao, Yile
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (01)
  • [4] Dong XT, 2011, J OPERAT THEOR, V66, P193
  • [5] A CANONICAL DECOMPOSITION OF COMPLEX SYMMETRIC OPERATORS
    Guo, Kunyu
    Zhu, Sen
    [J]. JOURNAL OF OPERATOR THEORY, 2014, 72 (02) : 529 - 547
  • [6] COMPLEX SYMMETRY OF TOEPLITZ OPERATORS ON THE WEIGHTED BERGMAN SPACES
    Hu, Xiao-He
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (03) : 855 - 873
  • [7] Complex symmetric monomial Toeplitz operators on the unit ball
    Hu, Xiao-He
    Dong, Xing-Tang
    Zhou, Ze-Hua
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (02)
  • [8] Complex Symmetric Toeplitz Operators on the Unit Polydisk and the Unit Ball
    Jiang, Cao
    Dong, Xingtang
    Zhou, Zehua
    [J]. ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 35 - 44
  • [9] Complex symmetric Toeplitz operators on the weighted Bergman space
    Ko, Eungil
    Lee, Ji Eun
    Lee, Jongrak
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (06) : 1393 - 1408
  • [10] On complex symmetric Toeplitz operators
    Ko, Eungil
    Lee, Ji Eun
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) : 20 - 34