Complex symmetric Toeplitz operators on the Hardy spaces and Bergman spaces

被引:0
作者
Hu, Xiaohe [1 ]
Wang, Cui [1 ]
Xu, Zhiyuan [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Tianjin Univ, Sch Math, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex symmetry; Toeplitz operator; Hardy spaces; Bergman spaces;
D O I
10.1007/s43034-024-00352-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first completely characterize the complex symmetric Toeplitz operators T phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\varphi $$\end{document} on the Hardy spaces H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2({\mathbb {D}})$$\end{document} with conjugations Cpi,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_p<^>{i,j}$$\end{document} and Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_n$$\end{document}. Next, we give a method to determine the coefficients of phi(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (z)$$\end{document} when T phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\varphi $$\end{document} is complex symmetric on H2(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>2({\mathbb {D}})$$\end{document} with the conjugation C sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_\sigma $$\end{document}, which partially solves a problem raised by [2]. Finally, we consider the complex symmetric Toeplitz operators T phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\varphi $$\end{document} on the weighted Bergman spaces A2(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A<^>2({\mathbb {B}}_{n})$$\end{document} and the pluriharmonic Bergman spaces b2(Bn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b<^>2({\mathbb {B}}_{n})$$\end{document} with conjugations CV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}_V$$\end{document}, where V is a symmetric permutation matrix.
引用
收藏
页数:18
相关论文
共 13 条
[1]   Complex Symmetric Toeplitz Operators [J].
Bu, Qinggang ;
Chen, Yong ;
Zhu, Sen .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (02)
[2]   Characterization of C-symmetric Toeplitz operators for a class of conjugations in Hardy spaces [J].
Chattopadhyay, Arup ;
Das, Soma ;
Pradhan, Chandan ;
Sarkar, Srijan .
LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (12) :2026-2048
[3]   Complex symmetry of Toeplitz operators [J].
Chen, Yong ;
Lee, Young Joo ;
Zhao, Yile .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (01)
[4]  
Dong XT, 2011, J OPERAT THEOR, V66, P193
[5]   A CANONICAL DECOMPOSITION OF COMPLEX SYMMETRIC OPERATORS [J].
Guo, Kunyu ;
Zhu, Sen .
JOURNAL OF OPERATOR THEORY, 2014, 72 (02) :529-547
[6]   COMPLEX SYMMETRY OF TOEPLITZ OPERATORS ON THE WEIGHTED BERGMAN SPACES [J].
Hu, Xiao-He .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (03) :855-873
[7]   Complex symmetric monomial Toeplitz operators on the unit ball [J].
Hu, Xiao-He ;
Dong, Xing-Tang ;
Zhou, Ze-Hua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (02)
[8]   Complex Symmetric Toeplitz Operators on the Unit Polydisk and the Unit Ball [J].
Jiang, Cao ;
Dong, Xingtang ;
Zhou, Zehua .
ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) :35-44
[9]   Complex symmetric Toeplitz operators on the weighted Bergman space [J].
Ko, Eungil ;
Lee, Ji Eun ;
Lee, Jongrak .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (06) :1393-1408
[10]   On complex symmetric Toeplitz operators [J].
Ko, Eungil ;
Lee, Ji Eun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) :20-34