Active laser frequency stabilization using neutral praseodymium (Pr)

被引:0
作者
S. Oppel
G. H. Guthöhrlein
W. Kaenders
J. von Zanthier
机构
[1] Universität Erlangen-Nürnberg,Institut für Optik, Information und Photonik
[2] Helmut-Schmidt-Universität,Fakultät Elektrotechnik, Lasertechnik und Werkstofftechnik
[3] Universität der Bundeswehr Hamburg,undefined
[4] Toptica Photonics AG,undefined
来源
Applied Physics B | 2010年 / 101卷
关键词
Diode Laser; Praseodymium; Frequency Stabilization; Hollow Cathode Lamp; Extended Cavity Diode Laser;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new possibility for the active frequency stabilization of a laser using transitions in neutral praseodymium. Because of its five outer electrons, this element shows a high density of energy levels leading to an extremely line-rich excitation spectrum with more than 25 000 known spectral lines ranging from the UV to the infrared. We demonstrate the active frequency stabilization of a diode laser on several praseodymium lines between 1105 and 1123 nm. The excitation signals were recorded in a hollow cathode lamp and observed via laser-induced fluorescence. These signals are strong enough to lock the diode laser onto most of the lines by using standard laser locking techniques. In this way, the frequency drifts of the unlocked laser of more than 30 MHz/h were eliminated and the laser frequency stabilized to within 1.4(1) MHz for averaging times >0.2 s. Frequency quadrupling the stabilized diode laser can produce frequency-stable UV-light in the range from 276 to 281 nm. In particular, using a strong hyperfine component of the praseodymium excitation line E=16 502.6167/2 cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$^{-1}\rightarrow E'=25\,442.742^{\mathrm{o}}_{9/2}$\end{document} cm−1 at λ=1118.5397(4) nm makes it possible—after frequency quadruplication—to produce laser radiation at λ/4=279.6349(1) nm, which can be used to excite the D2 line in Mg+.
引用
收藏
页码:33 / 44
页数:11
相关论文
共 50 条
  • [1] Semiconductor laser active frequency stabilization technologies: a review
    Wu, Yue
    Sun, Bowen
    Li, Xuewen
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2021, 79 (09) : 795 - 809
  • [2] Semiconductor laser active frequency stabilization technologies: a review
    Yue Wu
    Bowen Sun
    Xuewen Li
    Journal of the Korean Physical Society, 2021, 79 : 795 - 809
  • [3] Laser frequency stabilization using bichromatic crossover spectroscopy
    Jeong, Taek
    Moon, Han Seb
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (09)
  • [4] Laser frequency stabilization using a commercial wavelength meter
    Couturier, Luc
    Nosske, Ingo
    Hu, Fachao
    Tan, Canzhu
    Qiao, Chang
    Jiang, Y. H.
    Chen, Peng
    Weidemueller, Matthias
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (04)
  • [5] Laser frequency stabilization by using arm-locking
    Schulte, Hans Reiner
    Gath, Peter F.
    Herz, Markus
    LASER INTERFEROMETER SPACE ANTENNA, 2006, 873 : 379 - +
  • [6] Digitally controlled laser frequency stabilization for a ring laser using saturated absorption
    Udommai, Parinya
    Harvey, Matthew
    Murray, Andrew James
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (07)
  • [7] Laser-phase and frequency stabilization using atomic coherence
    Torii, Yoshio
    Tashiro, Hideyasu
    Ohtsubo, Nozomi
    Aoki, Takatoshi
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [8] Laser frequency stabilization and shifting by using modulation transfer spectroscopy
    Cheng Bing
    Wang Zhao-Ying
    Wu Bin
    Xu Ao-Peng
    Wang Qi-Yu
    Xu Yun-Fei
    Lin Qiang
    CHINESE PHYSICS B, 2014, 23 (10)
  • [9] SSFLC for laser frequency stabilization
    Matuszczyk, M
    Matuszczyk, T
    Muravski, A
    Rzepka, J
    LIQUID CRYSTALS: CHEMISTRY, PHYSICS AND APPLICATIONS, 2000, 4147 : 299 - 307
  • [10] Active laser, frequency stabilization and resolution enhancement of interferomelters for the measurement of gravitational waves in space
    Herz, M
    OPTICAL ENGINEERING, 2005, 44 (09)