Convergence of Rothe's method for fully nonlinear parabolic equations

被引:0
作者
Ivan Blank
Penelope Smith
机构
[1] Worcester Polytechnic Institute,Department of Mathematics
[2] Lehigh University,Department of Mathematics
来源
The Journal of Geometric Analysis | 2005年 / 15卷
关键词
35J60; 65M20; Rothe's method; the method of lines; fully nonlinear; parabolic PDE; viscosity solutions;
D O I
暂无
中图分类号
学科分类号
摘要
Convergence of Rothe's method for the fully nonlinear parabolic equation ut+F(D2u, Du, u, x, t)=0 is considered under some continuity assumptions on F. We show that the Rothe solutions are Lipschitz in time, Hölder in space, and they solve the equation in the viscosity sense. As an immediate corollary we get Lipschitz behavior in time of the viscosity solutions of our equation.
引用
收藏
页码:363 / 372
页数:9
相关论文
共 16 条
  • [1] Caffarelli L. A.(1996)On viscosity solutions of fully nonlinear equations with measurable ingredients Comm. Pure Appl. Math. 49 365-397
  • [2] Crandall M. G.(1992)User's guide to viscosity solutions of second order partial differential equations Bull. Amer. Math. Soc. 27 1-67
  • [3] Kocan M.(1988)The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations Arch. Ration. Mech. Anal. 101 1-27
  • [4] Święch A.(1988)A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations Proc. Amer. Math. Soc. 102 975-978
  • [5] Crandall M. G.(2001)Hölder estimates of solutions to difference partial differential equations of elliptic-parabolic type J. Geom. Anal. 11 77-89
  • [6] Ishii H.(2003)Convergence of Rothe's method in Hölder spaces Appl. Math. 48 353-365
  • [7] Lions P.-L.(1996)Local solutions to quasilinear parabolic equations without growth restrictions Z. Anal. Anwendungen 15 375-396
  • [8] Jensen R.(1988)Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations Rev. Mat. Iberoamericana 4 453-468
  • [9] Jensen R.(undefined)undefined undefined undefined undefined-undefined
  • [10] Lions P.L.(undefined)undefined undefined undefined undefined-undefined