Boundedness for Marcinkiewicz integrals associated with Schrödinger operators

被引:0
作者
WENHUA GAO
LIN TANG
机构
[1] Beijing Normal University Zhuhai,School of Applied Mathematics
[2] Peking University,LMAM, School of Mathematical Sciences
来源
Proceedings - Mathematical Sciences | 2014年 / 124卷
关键词
Marcinkiewicz integral; Schrödinger operator.; 42B20; 42B25; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
Let L = −Δ + V be a Schrödinger operator, where Δ is the Laplacian on ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{n}$\end{document}, while nonnegative potential V belongs to the reverse Hölder class. In this paper, we will show that Marcinkiewicz integral associated with Schrödinger operator is bounded on BMOL, and from HL1(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}_{L}(\mathbb {R}^{n})$\end{document} to L1(ℝn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{1}(\mathbb {R}^{n})$\end{document}.
引用
收藏
页码:193 / 203
页数:10
相关论文
共 20 条
  • [1] Benedek A(1962)Convolution operators on Banach space valued functions Proc. Nat. Acad. Sci. U.S.A. 48 356-365
  • [2] Calderón AP(2002)Marcinkiewicz integral on Hardy spaces Integr. Equ. Oper. Theory. 42 174-182
  • [3] Panzone R(2010)The BMOL space and Riesz transforms associated with Schrödinger operators Acta Math. Sin. (Engl. Ser.) 26 659-668
  • [4] Ding Y(1999)Hardy space Rev. Mat. Iber. 15 279-296
  • [5] Lu S(2005) associated to Schrödinger operator with potential satisfying reverse Hölder inequality Math. Z. 249 249-356
  • [6] Xue Q(1972)BMO spaces related to Shrödinger operators with potentials satisfying a reverse Hölder inequality Acta Math 46 137-193
  • [7] Dong J(1995)Hp-space of serval variables Ann. Inst. Fourier. Grenoble 45 513-546
  • [8] Liu H(1958) estimates for Schrödinger operators with certain potentials Trans. Amer. Math. Soc. 88 430-466
  • [9] Dziubański J(1990)On the functions of Littlewood–Paley, Lusin, and Marcinkiewicz Colloq. Math. 47 235-243
  • [10] Zienkiewicz J(undefined)A note on Marcinkiewicz integral undefined undefined undefined-undefined