Bounded Sequences, Orbits and Invariant Subspaces

被引:0
作者
Driss Drissi
机构
[1] Kuwait University,Department of Mathematics and Computer Science
来源
Complex Analysis and Operator Theory | 2010年 / 4卷
关键词
Orbits; Bounded conjugation orbit; Invariant subspaces; 47 B 10; 47 B 15;
D O I
暂无
中图分类号
学科分类号
摘要
Let {xn} be a sequence of complex numbers and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta^nx_j = \sum\nolimits_{k=0}^{n} (-1)^k\break\left(\begin{array}{l}n\\ k\\\end{array} \right)x_{n-k+j}}$$\end{document} . In this paper, we will show that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ |x_n| = O(n^k)}$$\end{document} , as n → ∞ for some positive integer k, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n|\Delta^n x_j|^{\frac{1}{n}} \to 0}$$\end{document} as n→ ∞, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta^{k+1} x_j = 0}$$\end{document} . More importantly, applications to the orbits of operators and invariant subspace problem are also given; this helps to improve former results obtained by Gelfand–Hille, Mbekhta–Zemánek and others.
引用
收藏
页码:813 / 819
页数:6
相关论文
共 16 条
  • [1] Atzmon A.(1980)Operators which are annihilated by analytic functions and invariant subspaces Acta Math. 144 27-63
  • [2] Atzmon A.(1984)On the existence of hyperinvariant subspaces J. Oper. Theory 11 3-40
  • [3] Aupetit B.(1994)Some spectral inequalities involving generalized scalar operators Studia Math. 109 51-66
  • [4] Drissi D.(1980)Sous espaces invariants de type fonctionnel Acta Math. 144 65-82
  • [5] Beauzamy B.(1973)The commutant of analytic Toeplitz operators Trans. Am. Math. Soc. 184 261-273
  • [6] Deddens J.A.(2001)Element with generalized bounded conjugation orbits Proc. Am. Math. Soc. 129 2011-2016
  • [7] Wong T.K.(1941)Zur Theorie der Charaktere der Abelschen topologischen Gruppen Math. Sb. 9 49-50
  • [8] Drissi D.(1944)On the theory of characters of groups and semi-groups in normed vector rings Proc. Nat. Acad. Sci. USA 30 58-60
  • [9] Mbekhta M.(1993)Sur le théorème ergodique uniforme et le spectre C. R. Acad. Sci. Paris Sér. I Math. 317 1155-1158
  • [10] Gelfand I.(1973)Invariant subspaces of the family of operators that commute with a completely continuous operator Funkcional Anal. i Prilozen 7 55-56