Computing Sparse Representation in a Highly Coherent Dictionary Based on Difference of L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document}

被引:2
|
作者
Yifei Lou
Penghang Yin
Qi He
Jack Xin
机构
[1] UC Irvine,Department of Mathematics
[2] University of Texas at Dallas,Department of Mathematical Sciences
关键词
Highly coherent dictionary; Sparse representation; minimization; Difference of convex programming; Simulated annealing; Comparison with ;
D O I
10.1007/s10915-014-9930-1
中图分类号
学科分类号
摘要
We study analytical and numerical properties of the L1-L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1-L_2$$\end{document} minimization problem for sparse representation of a signal over a highly coherent dictionary. Though the L1-L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1-L_2$$\end{document} metric is non-convex, it is Lipschitz continuous. The difference of convex algorithm (DCA) is readily applicable for computing the sparse representation coefficients. The L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} minimization appears as an initialization step of DCA. We further integrate DCA with a non-standard simulated annealing methodology to approximate globally sparse solutions. Non-Gaussian random perturbations are more effective than standard Gaussian perturbations for improving sparsity of solutions. In numerical experiments, we conduct an extensive comparison among sparse penalties such as L0,L1,Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0, L_1, L_p$$\end{document} for p∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (0,1)$$\end{document} based on data from three specific applications (over-sampled discreet cosine basis, differential absorption optical spectroscopy, and image denoising) where highly coherent dictionaries arise. We find numerically that the L1-L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1-L_2$$\end{document} minimization persistently produces better results than L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1$$\end{document} minimization, especially when the sensing matrix is ill-conditioned. In addition, the DCA method outperforms many existing algorithms for other nonconvex metrics.
引用
收藏
页码:178 / 196
页数:18
相关论文
共 49 条