Temperature effect on thermal-diffusivity and heat-capacity and derived values of thermal-conductivity of reservoir rock materials

被引:0
作者
Z. Z. Abdulagatova
S. N. Kallaev
Z. M. Omarov
A. G. Bakmaev
B. A. Grigor’ev
I. M. Abdulagatov
机构
[1] Geothermal Research Institute of the Dagestan Scientific Center of the Russian Academy of Sciences,Gubkin Russian State University of Oil and Gas
[2] Dagestan State University,undefined
[3] Institute of Physics of the Dagestan Scientific Center of the Russian Academy of Sciences,undefined
[4] National Research University,undefined
来源
Geomechanics and Geophysics for Geo-Energy and Geo-Resources | 2020年 / 6卷
关键词
Density; DSC; Heat capacity; Laser flash method; Geothermal reservoir rock; Thermal diffusivity; Thermal conductivity;
D O I
暂无
中图分类号
学科分类号
摘要
A laser flash method (micro-flash apparatus LFA 457) and differential scanning calorimeter (DSC 204 F1) were employed to study of the temperature effect on the thermophysical properties (thermal diffusivity a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}, heat capacity CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\text{P}}$$\end{document} and thermal conductivity λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}) of the natural reservoir rock sample. A relationship between the thermophysical properties behavior and the physical–chemical processes (thermal decomposition of pore heavy oil and volatilization of pore fluids) occurring in the rock’s pore fluids during heating in distinct temperature ranges was established. The measurements of the thermal-diffusivity have been made over the temperature range from 295 to 774 K. The isobaric heat capacities (CP) of the same sample were measured in the temperature range from 308 to 768 K. Uncertainties of the measurements are 3% and 1% for a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document} and CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\text{P}}$$\end{document}, respectively. The significant effect of thermal decomposition on the measured values of heat-capacity of reservoir rock sample at high temperatures (above 680 K) was experimentally found. We experimentally observed temperature anomaly of the heat capacity of rock sample in distinct temperature ranges, around 380 K (low-temperature range) and 680 K (high-temperature range).We attribute these anomalies to the dehydration (evolution of the volatile matter, VM, devolatilization) and aromatization of the carbon (thermal decomposition), which are known to occur under heat treatment. This leads to unusual increasing the heat capacity at high temperatures. Measured values of thermal diffusivity (a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}) and heat capacity (CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\text{P}}$$\end{document}) together with density data (ρ=2210kgm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho = { 2210}\;{\text{kg}}\;{\text{m}}^{ - 3}$$\end{document}) were used to calculate the derived key properties, thermal conductivities (λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}) of the rock sample, using very well-known relation, λ=aρCP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda = a\rho C_{\text{P}}$$\end{document}.
引用
收藏
相关论文
共 277 条
  • [31] Singh RM(2005)Thermal diffusivity of mantle minerals Int J Rock Mech Min Sci 42 1042-1055
  • [32] Wang B(1990)Pulse method of measuring thermal diffusivity at high temperatures Am Mineralogist 75 183-187
  • [33] Ranjith PG(1996)Zur Theorie der spezifischen Wärmen J Geophys Res 101 381-386
  • [34] Berman RG(2010)Experimental study of the thermal properties of coal during pyrolysis, oxidation, and re-oxidation J Geohys Res 115 B05313-710
  • [35] Brown TH(1997)A general analysis of moisture migration caused by temperature differences in an unsaturated porous medium High Temp-High Press 29 703-1706
  • [36] Berman RG(1999)Die Plancsche Theorie der Strahlung und die Theorie der spezifischen Wärme Science 283 1699-1208
  • [37] Brown TH(2001)An equation for the heat capacity of solids Am Mineral 86 1188-4726
  • [38] Blumm J(2004)Development program of hot dry rock geothermal resource in the Yangbajing Basin of China Geochim Cosmochim Acta 68 4721-62
  • [39] Opfermann J(2006)Rock thermal conductivity of Mesozoic geothermal aquifers in the Northeast German Basin Phys Chem Miner 33 45-206
  • [40] Born M(2008)The role of thermal conductivity measurements in modeling thermal histories in sedimentary basins Phys Earth Planet Interiors 170 201-639