Temperature effect on thermal-diffusivity and heat-capacity and derived values of thermal-conductivity of reservoir rock materials

被引:0
作者
Z. Z. Abdulagatova
S. N. Kallaev
Z. M. Omarov
A. G. Bakmaev
B. A. Grigor’ev
I. M. Abdulagatov
机构
[1] Geothermal Research Institute of the Dagestan Scientific Center of the Russian Academy of Sciences,Gubkin Russian State University of Oil and Gas
[2] Dagestan State University,undefined
[3] Institute of Physics of the Dagestan Scientific Center of the Russian Academy of Sciences,undefined
[4] National Research University,undefined
来源
Geomechanics and Geophysics for Geo-Energy and Geo-Resources | 2020年 / 6卷
关键词
Density; DSC; Heat capacity; Laser flash method; Geothermal reservoir rock; Thermal diffusivity; Thermal conductivity;
D O I
暂无
中图分类号
学科分类号
摘要
A laser flash method (micro-flash apparatus LFA 457) and differential scanning calorimeter (DSC 204 F1) were employed to study of the temperature effect on the thermophysical properties (thermal diffusivity a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}, heat capacity CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\text{P}}$$\end{document} and thermal conductivity λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}) of the natural reservoir rock sample. A relationship between the thermophysical properties behavior and the physical–chemical processes (thermal decomposition of pore heavy oil and volatilization of pore fluids) occurring in the rock’s pore fluids during heating in distinct temperature ranges was established. The measurements of the thermal-diffusivity have been made over the temperature range from 295 to 774 K. The isobaric heat capacities (CP) of the same sample were measured in the temperature range from 308 to 768 K. Uncertainties of the measurements are 3% and 1% for a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document} and CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\text{P}}$$\end{document}, respectively. The significant effect of thermal decomposition on the measured values of heat-capacity of reservoir rock sample at high temperatures (above 680 K) was experimentally found. We experimentally observed temperature anomaly of the heat capacity of rock sample in distinct temperature ranges, around 380 K (low-temperature range) and 680 K (high-temperature range).We attribute these anomalies to the dehydration (evolution of the volatile matter, VM, devolatilization) and aromatization of the carbon (thermal decomposition), which are known to occur under heat treatment. This leads to unusual increasing the heat capacity at high temperatures. Measured values of thermal diffusivity (a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}) and heat capacity (CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\text{P}}$$\end{document}) together with density data (ρ=2210kgm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho = { 2210}\;{\text{kg}}\;{\text{m}}^{ - 3}$$\end{document}) were used to calculate the derived key properties, thermal conductivities (λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}) of the rock sample, using very well-known relation, λ=aρCP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda = a\rho C_{\text{P}}$$\end{document}.
引用
收藏
相关论文
共 277 条
  • [1] Abdulagatov IM(2002)The effective thermal conductivity of fluid saturated porous mica-ceramics at high temperatures and high pressures Ind Eng Chem Res 41 3586-3593
  • [2] Emirov SN(2006)Effect of pressure and temperature on the thermal conductivity of rocks J Chem Eng Data 51 22-33
  • [3] Gairbekov KhA(2015)Thermal-diffusivity and heat-capacity measurements of sandstone at high temperatures using Laser-Flash and DSC methods Int J Thermophys 36 658-691
  • [4] Magomaeva MA(2019)Heat-capacity measurements of sandstone at high temperatures Geomech Geophys Geo-Energy Geo-Resour 5 65-85
  • [5] Sya Askerov(2009)Effect of temperature and pressure on the thermal conductivity of sandstone Int J Rock Mech Min Sci 46 1055-1071
  • [6] Ramazanova EN(2010)Effect of pressure, temperature, and oil-saturation on the thermal conductivity of sandstone up to 250 Mpa and 520 K J Pet Sci Eng 73 141-155
  • [7] Abdulagatov IM(2012)Effective thermal conductivity of fluid-saturated rocks. Experiment and modeling Eng Geol 135–136 24-39
  • [8] Emirov SN(2013)Thermal conductivity of soils and rocks from the Melbourne (Australia) region Eng Geol 164 131-138
  • [9] Abdulagatova ZZ(1984)A thermodynamic model for multicomponent melts, with application to the system CaO–Al Geochim Cosmochim Acta 45 661-678
  • [10] Askerov SYA(1985)O Contrib Miner Petrol 89 168-183