Estimation of the bias parameter of the skew random walk and application to the skew Brownian motion

被引:4
作者
Lejay A. [1 ,2 ,3 ]
机构
[1] Université de Lorraine, IECL, UMR 7502, Vandœuvre-lès-Nancy
[2] CNRS, IECL, UMR 7502, Vandœuvre-lés-Nancy
[3] Inria, Villers-lès-Nancy
关键词
Local asymptotic mixed normality; Local time; Maximum likelihood estimator; Null recurrent process; Skew Brownian motion; Skew random walk;
D O I
10.1007/s11203-017-9161-9
中图分类号
学科分类号
摘要
We study the asymptotic property of simple estimator of the parameter of a skew Brownian motion when one observes its positions on a fixed grid—or equivalently of a simple random walk with a bias at 0. This estimator, nothing more than the maximum likelihood estimator, is based only on the number of passages of the random walk at 0. It is very simple to set up, is consistent and is asymptotically mixed normal. We believe that this simplified framework is helpful to understand the asymptotic behavior of the maximum likelihood of the skew Brownian motion observed at discrete times which is studied in a companion paper. © 2017, Springer Science+Business Media Dordrecht.
引用
收藏
页码:539 / 551
页数:12
相关论文
共 43 条
[1]  
Alvarez L.H.R., Salminen P., Timing in the presence of directional predictability: Optimal stopping of Skew Brownian Motion (2016), (2016)
[2]  
Appuhamillage T., Bokil V., Thomann E., Waymire E., Wood B., Occupation and local times for skew Brownian motion with applications to dispersion across an interface, Ann Appl Probab, 21, 1, pp. 183-214, (2011)
[3]  
Barahona M., Rifo L., Sepulveda M., Torres S., A simulation-based study on Bayesian estimators for the skew Brownian motion, Entropy, 241, 14, pp. 1099-4300, (2016)
[4]  
Bass R.F., Khoshnevisan D., Rates of convergence to Brownian local time, Stoch Process Appl, 47, 2, pp. 197-213, (1993)
[5]  
Berry A.C., The accuracy of the Gaussian approximation to the sum of independent variates, Trans Am Math Soc, 49, pp. 122-136, (1941)
[6]  
Blyth C.R., Approximate binomial confidence limits, J Am Stat Assoc, 81, 395, pp. 843-855, (1986)
[7]  
Bossy M., Champagnat N., Maire S., Talay D., Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics, M2AN Math Model Numer Anal, 44, 5, pp. 997-1048, (2010)
[8]  
Brown L.D., Cai T.T., DasGupta A., Confidence intervals for a binomial proportion and asymptotic expansions, Ann Stat, 30, 1, pp. 160-201, (2002)
[9]  
Cantrell R.S., Cosner C., Diffusion models for population dynamics incorporating individual behavior at boundaries: applications to refuge design, Theor Popul Biol, 55, 2, pp. 189-207, (1999)
[10]  
Chung K.L., Durrett R., Downcrossings and local time, Z Wahrscheinlichkeitstheorie und Verw Gebiete, 35, 2, pp. 147-149, (1976)