Weighted composition–differentiation operators in the uniformly closed algebra generated by weighted composition operators

被引:0
作者
Gajath Gunatillake
机构
[1] American University of Sharjah,
来源
Acta Scientiarum Mathematicarum | 2023年 / 89卷
关键词
Weighted composition operator; Weighted composition–differentiation operator; Primary: 47B32; Secondary: 47B33;
D O I
暂无
中图分类号
学科分类号
摘要
Let φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} be an analytic self map of the open unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}. Assume that ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is an analytic map of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}. Suppose that f is in the Hardy space of the open unit disc Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^p$$\end{document}. The operator that takes f into ψ·f∘φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi \cdot f \circ \varphi $$\end{document} is a weighted composition operator, and is denoted by Cψ,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\psi ,\varphi }$$\end{document}. The operator that takes f into ψ·f′∘φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi \cdot f^\prime \circ \varphi $$\end{document} is a weighted composition-differentiation operator. We prove that some weighted composition-differentiation operators belong to the closed algebra generated by weighted composition operators in the uniform operator topology.
引用
收藏
页码:53 / 60
页数:7
相关论文
共 18 条
  • [1] Acharyya S(2019)Sums of weighted differentiation composition operators Complex Anal. Oper. Theory 13 1465-1479
  • [2] Ferguson T(2010)Normal weighted composition operators on the Hardy space J. Math. Anal. Appl. 367 278-286
  • [3] Bourdan P(2001)Weighted composition operators on Hardy spaces J. Math. Anal. Appl. 263 224-233
  • [4] Narayan S(2010)Hermitian weighted composition operators on Trans. Am. Math. Soc. 362 5771-5801
  • [5] Contreras MD(2020)Composition–differentiation operators on the Hardy space Proc. Am. Math. Soc. 148 2893-2900
  • [6] Hernandez-Diaz AG(2021)Normality and self-adjointness of weighted composition–differentiation operators Complex Anal. Oper. Theory 15 9-860
  • [7] Cowen C(2011)Invertible weighted composition operators J. Funct. Anal. 261 831-1410
  • [8] Ko E(2021)Weighted composition–differentiation operators on the Bergman Space Complex Anal. Oper. Theory 15 89-243
  • [9] Fatehi M(2015)Essential norms of products of weighted composition operators and differentiation operators between Banach spaces of analytic functions (English summary) Acta Math. Sci. Ser. B (Engl. Ed.) 35 1401-undefined
  • [10] Hammond C(2006)Products of composition and differentiation between Hardy spaces Bull. Aust. Math. Soc. 73 235-undefined