Asymptotic Behavior of Weighted Power Variations of Fractional Brownian Motion in Brownian Time

被引:0
作者
Raghid Zeineddine
机构
[1] Technische Universität Dortmund,Research Training Group 2131, Fakultät Mathematik
来源
Journal of Theoretical Probability | 2018年 / 31卷
关键词
Weighted power variations; Limit theorem; Malliavin calculus; Fractional Brownian motion; Fractional Brownian motion in Brownian time; 60F05; 60G15; 60G22; 60H05; 60H07;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of weighted power variations of fractional Brownian motion in Brownian time Zt:=XYt,t⩾0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_t:= X_{Y_t},t \geqslant 0$$\end{document}, where X is a fractional Brownian motion and Y is an independent Brownian motion.
引用
收藏
页码:1539 / 1589
页数:50
相关论文
共 17 条
[1]  
Gradinaru M(2003)Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index Ann. Probab. 31 1772-1820
[2]  
Russo F(1999)Stochastic calculus for Brownian motion on a Brownian fracture Ann. Appl. Probab. 9 629-667
[3]  
Vallois P(2008)Weighted power variations of iterated Brownian motion Electron. J. Probab. 13 1229-1256
[4]  
Khoshnevisan D(2009)Central and non-central limit theorems for weighted power variations of the fractional Brownian motion Ann. Inst. Henri Poincaré Probab. Stat. 46 1055-1079
[5]  
Lewis TM(2010)The weak Stratonovich integral with respect to fractional Brownian motion with Hurst parameter 1/6 Electron. J. Probab. 15 2117-2162
[6]  
Nourdin I(2014)An Itô-type formula for the fractional Brownian motion in Brownian time Electron. J. Probab. 19 1-15
[7]  
Peccati G(2015)Fluctuations of the power variation of fractional Brownian motion in Brownian time Bernoulli 21 760-780
[8]  
Nourdin I(2015)Change-of-variable formula for the bi-dimensional fractional Brownian motion in Brownian time ALEA Lat. Am. J. Probab. Math. Stat. 12 597-683
[9]  
Nualart D(undefined)undefined undefined undefined undefined-undefined
[10]  
Tudor C(undefined)undefined undefined undefined undefined-undefined