Behavior of confined fluids in nanoslit pores: the normal pressure tensor

被引:0
作者
Tahmineh (Ezzat) Keshavarzi
Farideh Sedaghat
G. Ali Mansoori
机构
[1] University of Illinois at Chicago,Department of BioEngineering
[2] Isfahan University of Technology,Department of Chemistry
来源
Microfluidics and Nanofluidics | 2010年 / 8卷
关键词
Behavior of nano-confined fluid; Hard-sphere fluid; Nanoconfined fluid; Nanoslit pore; Normal pressure tensor; Stress tensor;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of our research is to develop a theory, which can predict the behavior of confined fluids in nanoslit pores. The nanoslit pores studied in this work consist of two structureless and parallel walls in the xy plane located at z = 0 and z = H, in equilibrium with a bulk homogeneous fluid at the same temperature and at a given uniform bulk density. We have derived the following general equation for prediction of the normal pressure tensor Pzz of confined inhomogeneous fluids in nanoslit pores:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P_{zz} = kT\rho \left( {r_{1z} } \right)\left[ {1 + \frac{1}{kT}\frac{{\partial \phi_{\text{ext}} }}{{\partial r_{1z} }}{\text{d}}r_{1z} } \right] - \frac{1}{2}\int\limits_{v} {\varphi^{\prime}(\vec{r}_{12} )\rho^{(2)} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {r}_{12} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {r}_{1} } \right)} \frac{{(r_{12z} )^{2} }}{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {r}_{12} }}{\text{d}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {r}_{12} , $$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \vec{r}_{12} \equiv \vec{r}_{1} - \vec{r}_{2} $$\end{document} is the intermolecular position vector of molecule 2 with respect to molecule 1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r_{12z} = |\vec{r}_{12} |_{z} $$\end{document} is the projection of distance of molecule 1 from molecule 2 in the z-direction. This equation may be solved for any fluid possessing a defined intermolecular pair-potential energy function, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varphi \left( {\vec{r}_{12} } \right) ,$$\end{document} confined in a nanoslit pore and with a given fluid molecules—wall interaction potential function ϕext. As an important example of its application we have solved this equation for the hard-sphere fluid confined between two parallel–structureless hard walls with different nanometer distances and at various uniform bulk densities. Our results indicate the oscillatory form of the normal pressure tensor versus distance from the wall at high densities. As the density of the nanoconfined fluid decreases, the height and depth of the normal pressure tensor oscillations are reduced.
引用
收藏
页码:97 / 104
页数:7
相关论文
共 38 条
[1]  
Brovchenko I(2004)Water in nanopores: II. Coexistence curves from Gibbs ensemble Monte Carlo simulation J Chem Phys 120 1958-3749
[2]  
Geiger A(1996)Static properties of confined colloidal suspensions Phys Rev E 53 3745-27
[3]  
Oleinikova A(1987)Mean density approximation and hard-sphere expansion theory Fluid Phase Equilib 37 1-378
[4]  
Carbajal-Tinoco MD(2006)Phase behaviour of hard sphere confined between parallel hard plates: manipulation of colloidal crystal structure by confinement J Phys Cond Matter 18 371-3005
[5]  
Castro-Roman F(2006)Investigation of excess adsorption, solvation force, and plate–fluid interfacial tension for Lennard–Jones fluid confined in slit pores J Chem Phys 124 164701-829
[6]  
Arauz-Lara JL(1996)Density profiles and pair correlation function of hard sphere in narrow silts Phys Rev E 55 2993-253
[7]  
Chen LJ(1950)The statistical mechanical theory of transport processes. IV. The equation of state J Chem Phys 18 817-1954
[8]  
Ely JF(2008)Behavior of the confined hard-sphere fluid within nanoslits: a fundamental-measure density-functional theory study Int J Nanosci 7 245-141
[9]  
Mansoori GA(1992)Direct measurement of depletion and structural forces in a micellar system Phys Rev Lett 68 1951-29
[10]  
Fortini A(2006)An analytic model for nano confined fluids phase-transition: applications for confined fluids in nanotube and nanoslit J Comput Theor Nanosci 3 134-2081