Equilibrium problems under relaxed α-monotonicity on Hadamard manifolds

被引:0
|
作者
S. Jana
机构
[1] Narajole Raj College,Department of Mathematics
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2022年 / 71卷
关键词
Hadamard manifolds; Variational inequalities; Equilibrium problems; KKM mappings; 47H05; 58A05; 58B20; 90C33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of solutions of both equilibrium problems and mixed equilibrium problems on Hadamard manifolds. Under relaxed α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-pseudomonotonicity assumption on the underlying bifunction we prove that the solution set of the equilibrium problem is nonempty. We also provide the existence of solution of mixed equilibrium problems with relaxed α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-monotonicity. The results presented in this paper generalize and improve some known results given in literature, see for example (Colao et al. in J Math Anal Appl 388:61–77, 2012; Jana and Nahak in Rend Circ Mat Palermo(2) 65(1):97–109, 2016; Mahato and Nahak in OPSEARCH, 2013. https://doi.org/10.1007/s12597-013-0142-5).
引用
收藏
页码:361 / 372
页数:11
相关论文
共 50 条
  • [21] Maximal element with applications to Nash equilibrium problems in Hadamard manifolds
    Lu, Hai-Shu
    Li, Rong
    Wang, Zhi-Hua
    OPTIMIZATION, 2019, 68 (08) : 1491 - 1520
  • [22] GAP FUNCTIONS AND DESCENT METHODS FOR EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS
    Li, Xiao-Bo
    Zhou, Li-Wen
    Huang, Nan-Jing
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (04) : 807 - 826
  • [23] AN EXTRAGRADIENT ALGORITHM FOR STRONGLY PSEUDOMONOTONE EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS
    Khammahawong, Konrawut
    Kumam, Poom
    Chaipunya, Parin
    Yao, Jen-Chih
    Wen, Ching-Feng
    Jirakitpuwapat, Wachirapong
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (01): : 350 - 371
  • [24] Duality for Equilibrium Problems under Generalized Monotonicity
    I. V. Konnov
    S. Schaible
    Journal of Optimization Theory and Applications, 2000, 104 : 395 - 408
  • [25] Duality for equilibrium problems under generalized monotonicity
    Konnov, IV
    Schaible, S
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 104 (02) : 395 - 408
  • [26] Extragradient-like method for pseudomontone equilibrium problems on Hadamard manifolds
    Chen, Junfeng
    Liu, Sanyang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [27] A new regularization of equilibrium problems on Hadamard manifolds: applications to theories of desires
    Bento, G. C.
    Cruz Neto, J. X.
    Soares Jr, P. A.
    Soubeyran, A.
    ANNALS OF OPERATIONS RESEARCH, 2022, 316 (02) : 1301 - 1318
  • [28] Necessary and Sufficient Optimality Conditions for Vector Equilibrium Problems on Hadamard Manifolds
    Ruiz-Garzon, Gabriel
    Osuna-Gomez, Rafaela
    Ruiz-Zapatero, Jaime
    SYMMETRY-BASEL, 2019, 11 (08):
  • [29] Equilibrium problems under generalized convexity and generalized monotonicity
    Bianchi, M
    Schaible, S
    JOURNAL OF GLOBAL OPTIMIZATION, 2004, 30 (2-3) : 121 - 134
  • [30] Equilibrium Problems under Generalized Convexity and Generalized Monotonicity
    Monica Bianchi
    Siegfried Schaible
    Journal of Global Optimization, 2004, 30 : 121 - 134