Explicit formulae for one-part double Hurwitz numbers with completed 3-cycles

被引:0
作者
Viet Anh Nguyen
机构
[1] Université d’Angers,LAREMA UMR CNRS 6093
来源
Journal of Algebraic Combinatorics | 2018年 / 48卷
关键词
Hurwitz numbers; Symmetric groups; Symmetric functions;
D O I
暂无
中图分类号
学科分类号
摘要
We prove two explicit formulae for one-part double Hurwitz numbers with completed 3-cycles. We define “combinatorial Hodge integrals” from these numbers in the spirit of the celebrated ELSV formula. The obtained results imply some explicit formulae and properties of the combinatorial Hodge integrals.
引用
收藏
页码:307 / 323
页数:16
相关论文
共 32 条
  • [1] Alexandrov A(2015)Enumerative geometry, tau-functions and Heisenberg–Virasoro algebra Comm. Math. Phys. 338 195-249
  • [2] Cavalieri R(2010)Tropical Hurwitz numbers J. Algebraic Combin. 32 241-265
  • [3] Johnson P(2001)Hurwitz numbers and intersections on moduli spaces of curves Invent. Math. 146 297-327
  • [4] Markwig H(2011)The Laplace transform of the cut-and-join equation and the Bouchard-Mariño conjecture on Hurwitz numbers Publ. Res. Inst. Math. Sci. 47 629-670
  • [5] Ekedahl T(2003)Hodge integrals, partition matrices, and the Ann. Math. (2) 157 97-124
  • [6] Lando S(2005) conjecture Adv. Math. 198 43-92
  • [7] Shapiro M(2011)Towards the geometry of double Hurwitz numbers Michigan Math. J. 60 171-198, 04
  • [8] Vainshtein A(2015)Abelian Hurwitz-Hodge integrals Russian Math. Surveys 70 453-126
  • [9] Eynard B(1994)Combinatorial solutions to integrable hierarchies C. R. Acad. Sci. Paris Sér. I Math. 319 121-453
  • [10] Mulase M(2000)Polynomial functions on the set of Young diagrams Math. Res. Lett. 7 447-560