Seasonal freeze-thaw processes impact microbial communities of soil aggregates associated with soil pores on the Qinghai-Tibet Plateau

被引:3
|
作者
Wang, Rui-Zhe [1 ,2 ]
Hu, Xia [1 ,2 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Fac Geog Sci, Sch Nat Resources, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Phospholipid fatty acid; Seasonal freeze-thaw process; Soil aggregate; Soil microbial biomass; Soil pore; FATTY-ACID ANALYSIS; CARBON AVAILABILITY; LATE WINTER; BACTERIAL; BIOMASS; FUNGAL; DYNAMICS; RESTORATION; DIVERSITY; PROFILES;
D O I
10.1186/s13717-024-00522-8
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Background Seasonal freeze-thaw (FT) processes alter soil formation and cause changes in soil microbial communities, which regulate the decomposition of organic matter in alpine ecosystems. Soil aggregates are basic structural units and play a critical role in microbial habitation. However, the impact of seasonal FT processes on the distribution of microbial communities associated with soil pores in different aggregate fractions under climate change has been overlooked. In this study, we sampled soil aggregates from two typical alpine ecosystems (alpine meadow and alpine shrubland) during the seasonal FT processes (UFP: unstable freezing period, SFP: stable frozen period, UTP: unstable thawing period and STP: stable thawed period). The phospholipid fatty acid (PLFA) method was used to determine the biomass of living microbes in different aggregate fractions. Results The microbial biomass of 0.25-2 mm and 0.053-0.25 mm aggregates did not change significantly during the seasonal FT process while the microbial biomass of > 2 mm aggregates presented a significant difference between the STP and UTP. Bacterial communities dominated the microbes in aggregates, accounting for over 80% of the total PLFAs. The microbial communities of soil aggregates in the surface layer were more sensitive to the seasonal FT process than those in other soil layers. In the thawing period, Gram positive bacteria (GP) was more dominant. In the freezing period, the ratio of Gram-positive to Gram-negative bacterial PLFAs (GP/GN) was low because the enrichment of plant litter facilitated the formation of organic matter. In the freezing process, pores of 30-80 mu m (mesopores) favored the habitation of fungal and actinobacterial communities while total PLFAs and bacterial PLFAs were negatively correlated with mesopores in the thawing process. Conclusions The freezing process caused a greater variability in microbial biomass of different aggregate fractions. The thawing process increased the differences in microbial biomass among soil horizons. Mesopores of aggregates supported the habitation of actinobacterial and fungal communities while they were not conducive to bacterial growth. These findings provide a further comprehension of biodiversity and accurate estimation of global carbon cycle.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An estimation method of soil freeze-thaw erosion in the Qinghai-Tibet Plateau
    Guo, Bing
    Zhou, Yi
    Zhu, Jinfeng
    Liu, Wenliang
    Wang, Futao
    Wang, Litao
    Jiang, Lin
    NATURAL HAZARDS, 2015, 78 (03) : 1843 - 1857
  • [2] Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau
    Chen, Boli
    Luo, Siqiong
    Lu, Shihua
    Zhang, Yu
    Ma, Di
    CLIMATE RESEARCH, 2014, 59 (03) : 243 - 257
  • [3] Effects of freeze-thaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau
    Xie Sheng-bo
    Qu Jian-jun
    Lai Yuan-ming
    Zhou Zhi-wei
    Xu Xiang-tian
    JOURNAL OF MOUNTAIN SCIENCE, 2015, 12 (04) : 999 - 1009
  • [4] The Response of Shallow Groundwater Levels to Soil Freeze-Thaw Process on the Qinghai-Tibet Plateau
    Dai, Licong
    Guo, Xiaowei
    Du, Yangong
    Zhang, Fawei
    Ke, Xun
    Cao, Yingfang
    Li, Yikang
    Li, Qian
    Lin, Li
    Cao, Guangmin
    GROUNDWATER, 2019, 57 (04) : 602 - 611
  • [5] Effects of freeze-thaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau
    Sheng-bo Xie
    Qu Jian-jun
    Lai Yuan-ming
    Zhou Zhi-wei
    Xu Xiang-tian
    Journal of Mountain Science, 2015, 12 : 999 - 1009
  • [6] Water migration in subgrade soil under seasonal freeze-thaw cycles in an alpine meadow on the Qinghai-Tibet Plateau
    Guan-qing Wu
    Yong-li Xie
    Jin Wei
    Xia-bing Yue
    Journal of Mountain Science, 2022, 19 : 1767 - 1781
  • [7] Water migration in subgrade soil under seasonal freeze-thaw cycles in an alpine meadow on the Qinghai-Tibet Plateau
    Wu Guan-qing
    Xie Yong-li
    Wei Jin
    Yue Xia-bing
    JOURNAL OF MOUNTAIN SCIENCE, 2022, 19 (06) : 1767 - 1781
  • [8] Water migration in subgrade soil under seasonal freeze-thaw cycles in an alpine meadow on the Qinghai-Tibet Plateau
    WU Guan-qing
    XIE Yong-li
    WEI Jin
    YUE Xia-bing
    JournalofMountainScience, 2022, 19 (06) : 1767 - 1782
  • [9] Investigating soil properties and their effects on freeze-thaw processes in a thermokarst lake region of Qinghai-Tibet Plateau, China
    Ke, Xianmin
    Wang, Wei
    Niu, Fujun
    Gao, Zeyong
    ENGINEERING GEOLOGY, 2024, 342
  • [10] Wind tunnel simulation of the effects of freeze-thaw cycles on soil erosion in the Qinghai-Tibet Plateau
    Xie, ShengBo
    Qu, JianJun
    Wang, Tao
    SCIENCES IN COLD AND ARID REGIONS, 2016, 8 (03): : 187 - 195