Distance based indices in nanotubical graphs: part 1

被引:0
作者
Vesna Andova
Martin Knor
Riste Škrekovski
机构
[1] Ss Cyril and Methodius University,Faculty of Electrical Engineering and Information Technologies
[2] Slovak University of Technology in Bratislava,Department of Mathematics, Faculty of Civil Engineering
[3] Faculty of Information Studies in Novo mesto,Faculty of Mathematics and Physics
[4] University of Ljubljana,undefined
[5] University of Primorska,undefined
[6] FAMNIT,undefined
来源
Journal of Mathematical Chemistry | 2018年 / 56卷
关键词
Nanotubical graphs; Open nanotube; Distance; Topological indices; Molecular descriptor; Fullerene; Wiener index; Schultz index; Degree distance; Gutman index; 05C12; 9210; 94C15;
D O I
暂无
中图分类号
学科分类号
摘要
Nanotubical structures are obtained by wrapping a hexagonal grid, and then possibly closing the tube with caps. We show that the size of a cap of a closed (k, l)-nanotube is bounded by a function that depends only on k and l, and that those extra vertices of the caps do not influence the obtained asymptotical value of the distance based indices considered here. Consequently the asymptotic values are the same for open and closed nanostructures. We also show that the asymptotic for Wiener index, Schultz index (also known as degree distance), and Gutman index for (all) nanotubical graphs of type (k, l) on n vertices are n36(k+l)+O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n^3}{6(k+l)}+O(n^2)$$\end{document}, 3n32(k+l)+O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3n^3}{2(k+l)}+O(n^2)$$\end{document}, and n3k+l+O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n^3}{k+l}+O(n^2)$$\end{document}, respectively. In all cases, the leading term depends on the circumference of the nanotubical graph, but not on its specific type. Thus, we conclude that these distance based topological indices seem not to be the most suitable for distinguishing nanotubes with the same circumference and of different type as far as the leading term is concerned.
引用
收藏
页码:2801 / 2815
页数:14
相关论文
共 41 条
  • [1] Andova V(2015)On diameter of nanotubical fullerene graphs MATCH Commun. Math. Comput. Chem. 73 529-542
  • [2] Blenkuš D(2016)Mathematical aspects of fullerenes Ars Math. Contemp. 11 353-379
  • [3] Došlić T(2016)Distances on nanotubical structures J. Math. Chem. 54 1575-1584
  • [4] Kardoš F(1982)Highly discriminating distance based numerical descriptor Chem. Phys. Lett. 89 399-404
  • [5] Škrekovski R(1983)Topological indices based on topological distances in molecular graphs Pure Appl. Chem. 55 199-206
  • [6] Andova V(1997)A constructive enumeration of fullerenes J. Algorithms 23 345-358
  • [7] Kardoš F(1999)A census of nanotube caps Chem. Phys. Lett. 315 335-347
  • [8] Škrekovski R(2003)Pentagon–hexagon-patches with short boundaries Eur. J. Comb. 24 517-529
  • [9] Andova V(1994)Selected properties of the Schultz molecular topological index J. Chem. Inf. Comput. Sci. 34 1087-1089
  • [10] Knor M(2016)Mathematical aspects on Wiener index Ars Math. Contemp. 11 327-352