Static control logic for microfluidic devices using pressure-gain valves

被引:119
作者
Weaver, James A. [1 ]
Melin, Jessica [2 ,3 ]
Stark, Don [1 ]
Quake, Stephen R. [2 ,3 ]
Horowitz, Mark A. [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[3] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
关键词
LARGE-SCALE INTEGRATION; SYSTEMS; TECHNOLOGIES; MICROVALVE; VERSATILE; PUMPS;
D O I
10.1038/NPHYS1513
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Microfluidic technology has developed greatly in recent years, enabling multiple analysis systems to be placed on a microfluidic chip. However, microfluidic large-scale integration of control elements analogous to those achieved in the microelectronics industry is still a challenge. We present an integrated microfluidic valve, compatible with standard soft-lithography processes, which has a pressure gain much greater than unity. We show that this enables integration of fully static digital control logic and state storage directly on-chip, ultimately enabling microfluidic-state machines to be designed. Outputs from this digital control logic can then be used to control traditional analyte flow valves. This strategy enables much of the bulky external hardware at present used to control pneumatically driven microfluidic chips in the laboratory to be transferred onto the microfluidic chip, which drastically reduces the required number of external chip connections.
引用
收藏
页码:218 / 223
页数:6
相关论文
共 29 条
[1]   Phase knowledge enables rational screens for protein crystallization [J].
Anderson, Megan J. ;
Hansen, Carl L. ;
Quake, Stephen R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (45) :16746-16751
[2]   Microfluidics-based systems biology [J].
Breslauer, DN ;
Lee, PJ ;
Lee, LP .
MOLECULAR BIOSYSTEMS, 2006, 2 (02) :97-112
[3]   Surface-micromachined parylene dual valves for on-chip unpowered microflow regulation [J].
Chen, Po-Jui ;
Rodger, Damien C. ;
Meng, Ellis M. ;
Humayun, Mark S. ;
Tai, Yu-Chong .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2007, 16 (02) :223-231
[4]   Micro total analysis systems. Latest advancements and trends [J].
Dittrich, Petra S. ;
Tachikawa, Kaoru ;
Manz, Andreas .
ANALYTICAL CHEMISTRY, 2006, 78 (12) :3887-3907
[5]   Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis [J].
Einav, Shirit ;
Gerber, Doron ;
Bryson, Paul D. ;
Sklan, Ella H. ;
Elazar, Menashe ;
Maerkl, Sebastian J. ;
Glenn, Jeffrey S. ;
Quake, Stephen R. .
NATURE BIOTECHNOLOGY, 2008, 26 (09) :1019-1027
[6]   Versatile, fully automated, microfluidic cell culture system [J].
Gomez-Sjoeberg, Rafael ;
Leyrat, Anne A. ;
Pirone, Dana M. ;
Chen, Christopher S. ;
Quake, Stephen R. .
ANALYTICAL CHEMISTRY, 2007, 79 (22) :8557-8563
[7]   Microfluidic memory and control devices [J].
Groisman, A ;
Enzelberger, M ;
Quake, SR .
SCIENCE, 2003, 300 (5621) :955-958
[8]   Development and multiplexed control of latching pneumatic valves using microfluidic logical structures [J].
Grover, WH ;
Ivester, RHC ;
Jensen, EC ;
Mathies, RA .
LAB ON A CHIP, 2006, 6 (05) :623-631
[9]   Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices [J].
Grover, WH ;
Skelley, AM ;
Liu, CN ;
Lagally, ET ;
Mathies, RA .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 89 (03) :315-323
[10]   Centrifugo-magnetic pump for gas-to-liquid sampling [J].
Haeberle, Stefan ;
Schmitt, Norbert ;
Zengerle, Roland ;
Ducree, Jens .
SENSORS AND ACTUATORS A-PHYSICAL, 2007, 135 (01) :28-33