A Property in Vector-Valued Function Spaces

被引:0
作者
Dongni Tan
Kexin Zhao
机构
[1] Tianjin University of Technology,
来源
Results in Mathematics | 2021年 / 76卷
关键词
The Mazur–Ulam property; vector-valued; Tingley’s problem; Primary 46B04; Secondary 46B20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a property which is equivalent to generalised-lushness for separable spaces. It thus may be seemed as a geometrical property of a Banach space which ensures the space to have the Mazur–Ulam property. We prove that a Banach space X enjoys this property if and only if C(K, X) enjoys this property. We also show the same result holds for L∞(μ,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty (\mu ,X)$$\end{document} and L1(μ,X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1(\mu ,X)$$\end{document}.
引用
收藏
相关论文
共 28 条
[1]  
Becerra Guerrero J(2019)On the extension of isometries between the unit spheres of a JBW*-triple and a Banach space J. Inst. Math. Jussieu First View 1 1-27
[2]  
Cueto M(2007)Numerical index of Banach spaces and duality Math. Proc. Cambridge Philos. Soc. 142 93-102
[3]  
Fernández-Polo FJ(2011)On a generalized Mazur-Ulam question: extension of isometries between unit pheres of Banach space J. Math. Anal. Appl. 377 464-470
[4]  
Peralta AM(2019)On the Mazur-Ulam property for the space of Hilbert-space-valued continuous functions J. Math. Anal. Appl. 479 875-902
[5]  
Boyko K(2017)Tingley’s problem through the facial structure of an atomic JBW*-triple J. Math. Anal. Appl. 455 750-760
[6]  
Kadets V(2018)Low rank compact operators and Tingley’s problem Adv. Math. 338 1-40
[7]  
Martín M(2015)Some remarks on generalised lush spaces Studia Math. 231 29-44
[8]  
Werner D(2012)Extension of isometries between unit spheres of finite-dimensional polyhedral Banach spaces J. Math. Anal. Appl. 396 441-447
[9]  
Cheng L(2020)Generalized-lush spaces revisited Ann. Funct. Anal. 11 244-258
[10]  
Dong Y(2018)A survey on Tingley’s problem for operator algebras Acta Sci. Math. (Szeged) 84 81-123