Comparative soil CO2 flux measurements and geostatistical estimation methods on Masaya volcano, Nicaragua

被引:0
作者
Jennifer L. Lewicki
Deborah Bergfeld
Carlo Cardellini
Giovanni Chiodini
Domenico Granieri
Nick Varley
Cynthia Werner
机构
[1] Lawrence Berkeley National Laboratory,Earth Sciences Division
[2] U.S. Geological Survey,Dipartimento di Scienze della Terra
[3] Università di Perugia,Osservatorio Vesuviano
[4] Istituto Nazionale di Geofisica e Vulcanologia,Facultad de Ciencias
[5] Universidad de Colima,undefined
[6] Institute of Geological and Nuclear Sciences,undefined
来源
Bulletin of Volcanology | 2005年 / 68卷
关键词
Carbon dioxide; Soil gas; Accumulation chamber method; Geostatistics; Masaya volcano; Volcano monitoring; Emission rates;
D O I
暂无
中图分类号
学科分类号
摘要
We present a comparative study of soil CO2 flux (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\rm CO}_2 }$$\end{document}) measured by five groups (Groups 1–5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases on Masaya volcano, Nicaragua. Groups 1–5 measured \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\rm CO}_2 }$$\end{document} using the accumulation chamber method at 5-m spacing within a 900 m2 grid during a morning (AM) period. These measurements were repeated by Groups 1–3 during an afternoon (PM) period. Measured \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\rm CO}_2 }$$\end{document} ranged from 218 to 14,719 g m−2 day−1. The variability of the five measurements made at each grid point ranged from ±5 to 167%. However, the arithmetic means of fluxes measured over the entire grid and associated total CO2 emission rate estimates varied between groups by only ±22%. All three groups that made PM measurements reported an 8–19% increase in total emissions over the AM results. Based on a comparison of measurements made during AM and PM times, we argue that this change is due in large part to natural temporal variability of gas flow, rather than to measurement error. In order to estimate the mean and associated CO2 emission rate of one data set and to map the spatial \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\rm CO}_2 }$$\end{document} distribution, we compared six geostatistical methods: arithmetic and minimum variance unbiased estimator means of uninterpolated data, and arithmetic means of data interpolated by the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and sequential Gaussian simulation methods. While the total CO2 emission rates estimated using the different techniques only varied by ±4.4%, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\rm CO}_2 }$$\end{document} maps showed important differences. We suggest that the sequential Gaussian simulation method yields the most realistic representation of the spatial distribution of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_{{\rm CO}_2 }$$\end{document}, but a variety of geostatistical methods are appropriate to estimate the total CO2 emission rate from a study area, which is a primary goal in volcano monitoring research.
引用
收藏
页码:76 / 90
页数:14
相关论文
共 107 条
[1]  
Bergfeld D(2001)Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada; relations between surface phenomena and the geothermal reservoir Chem Geol 177 43-66
[2]  
Goff F(2000)Remote sensing of CO Geology 28 915-918
[3]  
Janik CJ(2004) and H Appl Geochem 19 73-88
[4]  
Burton M(2003)O emission rates from Masaya volcano, Nicaragua J Geophys Res 108 2425-552
[5]  
Oppenheimer C(1998)CO Appl Geochem 13 543-16221
[6]  
Horrocks L(2001) soil flux at Vulcano (Italy): comparison of active and passive methods J Geophys Res 106 16213-434
[7]  
Francis P(2002)Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release Bull Volcanol 64 423-3134
[8]  
Carapezza ML(1999)Soil CO2 flux measurements in volcanic and geothermal areas Eos (Transactions, American Geophysical Union) 80 575,581-29
[9]  
Granieri D(2001)CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy Geophys Res Lett 28 3131-678
[10]  
Cardellini C(2001)Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua Chem Geol 177 15-161