Variational techniques for a system of Sturm–Liouville equations
被引:0
作者:
论文数: 引用数:
h-index:
机构:
Saeid Shokooh
机构:
[1] Gonbad Kavous University,Department of Mathematics, Faculty of Basic Sciences
来源:
Journal of Elliptic and Parabolic Equations
|
2023年
/
9卷
关键词:
Sixth order Sturm–Liouville equation;
Multiplicity of solutions;
Critical point;
35J35;
47J10;
58E05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this article, we study a system of sixth order Sturm–Liouville equations with positive parameter λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document}. By exploiting the variational method and critical point theory, we show that if the control parameter λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document} is placed in an appropriate interval, our problem has one nontrivial weak solution. It should be noted that no symmetry assumption is used in the results.
机构:
Vilnius Univ, Inst Math & Informat, LT-08663 Vilnius, LithuaniaVilnius Univ, Inst Math & Informat, LT-08663 Vilnius, Lithuania
Skucaite, Agne
Stikonas, Arturas
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Univ, Inst Math & Informat, LT-08663 Vilnius, Lithuania
Vilnius Univ, Fac Math & Informat, LT-03225 Vilnius, LithuaniaVilnius Univ, Inst Math & Informat, LT-08663 Vilnius, Lithuania