Proof of the Fukui conjecture via resolution of singularities and related methods. II \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\star}$$\end{document}[inline-graphic not available: see fulltext]

被引:0
作者
Shigeru Arimoto
Mark Spivakovsky
Keith F. Taylor
Paul G. Mezey
机构
[1] University of Saskatchewan,Department of Chemistry
[2] Unité Mixte de Recherches CNRS (UMR 5580),Laboratoire de Mathematiques Emile Picard
[3] UFR MIG,Department of Mathematics and Statistics
[4] Université Paul Sabatier,Canada Research Chair in Scientific Modeling and Simulation, Chemistry Department
[5] Dalhousie University,undefined
[6] Memorial University,undefined
关键词
additivity problems; asymptotic linearity theorem (ALT); Fukui conjecture; repeat space theory (RST); resolution of singularities;
D O I
10.1007/s10910-004-1449-5
中图分类号
学科分类号
摘要
The present article is a direct continuation of the first part of this series. We reduce a proof of the Fukui conjecture (concerning the additivity problem of the zero-point vibrational energies of hydrocarbons) to that of a proposition related to the theory of algebraic curves, so that we can focus on the key mechanism of the additivity phenomena. Namely, by establishing what is called the Basic Piecewise Monotone Theorem (BPMT), we reduce a proof of the Fukui conjecture to that of a proposition, called the Local Analyticity Proposition, Version 1 (LAP1), which admits a proof via resolution of singularities. By LAP1, the essential part of the mechanism of the “asymptotic linearity phenomena” is extracted and is elucidated by using tools from the mathematical theory of algebraic curves, whose language is of vital importance in analyzing the crux of the additivity mechanism.
引用
收藏
页码:171 / 189
页数:18
相关论文
共 27 条
[1]  
Arimoto S.(2005)undefined J. Math. Chem. 37 75-undefined
[2]  
Spivakovsky M.(2003)undefined J. Math. Chem. 34 253-undefined
[3]  
Taylor K.F.(2003)undefined J. Math. Chem. 34 259-undefined
[4]  
Mezey P.G.(2003)undefined J. Math. Chem. 34 287-undefined
[5]  
Arimoto S.(1999)undefined Int. J. Quant. Chem. 74 633-undefined
[6]  
Arimoto S.(2001)undefined Int. J. Quant. Chem. 84 389-undefined
[7]  
Arimoto S.(2004)undefined Int. J. Quant. Chem. 97 765-undefined
[8]  
Arimoto S.(undefined)undefined undefined undefined undefined-undefined
[9]  
Fukui K.(undefined)undefined undefined undefined undefined-undefined
[10]  
Zizler P.(undefined)undefined undefined undefined undefined-undefined