Random A-permutations and Brownian motion

被引:0
作者
A. L. Yakymiv
机构
[1] Russian Academy of Sciences,Steklov Mathematical Institute
来源
Proceedings of the Steklov Institute of Mathematics | 2013年 / 282卷
关键词
BROWNIAN Motion; STEKLOV Institute; Cycle Length; Discrete Math; Random Permutation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a random permutation τn uniformly distributed over the set of all degree n permutations whose cycle lengths belong to a fixed set A (the so-called A-permutations). Let Xn(t) be the number of cycles of the random permutation τn whose lengths are not greater than nt, t ∈ [0, 1], and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l(t) = \sum\nolimits_{i \leqslant t,i \in A} {1/i,t > 0} $\end{document}. In this paper, we show that the finite-dimensional distributions of the random process \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ Y_n (t) = (X_n (t) - l(n^t ))/\sqrt {\varrho \ln n} ,t \in [0,1]\} $\end{document} converge weakly as n → ∞ to the finite-dimensional distributions of the standard Brownian motion {W(t), t ∈ [0, 1]} in a certain class of sets A of positive asymptotic density ϱ.
引用
收藏
页码:298 / 318
页数:20
相关论文
共 30 条
[1]  
Bender E A(1974)Asymptotic methods in enumeration SIAM Rev. 16 485-515
[2]  
Curtiss J H(1942)A note on the theory of moment generating functions Ann. Math. Stat. 13 430-433
[3]  
DeLaurentis J M(1985)Random permutations and Brownian motion Pac. J. Math. 119 287-301
[4]  
Pittel B G(1991)On the functional central limit theorem for the Ewens sampling formula Ann. Appl. Probab. 1 539-545
[5]  
Donnelly P(1972)The sampling theory of selectively neutral alleles Theor. Popul. Biol. 3 87-112
[6]  
Kurtz T G(1990)A functional central limit theorem for the Ewens sampling formula J. Appl. Probab. 27 28-43
[7]  
Tavaré S(1976)Asymptotic normality of some variables connected with the cyclic structure of random permutations Mat. Sb. 99 121-133
[8]  
Ewens W J(2002)“On random permutations Proceedings in Discrete Mathematics 5 73-92
[9]  
Hansen J C(1989)On the number of permutations with constraints on their cycle lengths Diskret. Mat. 1 97-109
[10]  
Bolotnikov Yu V(1976)On the number of permutations of special form Mat. Sb. 99 468-476