Shape optimization in two-dimensional viscous compressible fluids

被引:0
作者
Zhong Tan
Ying Hui Zhang
机构
[1] Xiamen University,School of Mathematical Sciences
[2] Hu’nan Institute of Science and Technology,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2010年 / 26卷
关键词
Optimization shape; Orlicz spaces; Navier-Stokes equations; 35B30; 35Q30;
D O I
暂无
中图分类号
学科分类号
摘要
We present a method for solving the optimal shape problems for profiles surrounded by viscous compressible fluids in two space dimensions. The class of admissible profiles is quite general including the minimal volume condition and a constraint on the thickness of the boundary. The fluid flow is modelled by the Navier-Stokes system for a general viscous barotropic fluid with the pressure satisfying p(ϱ) = aϱlogd(ϱ) for large ϱ. Here d > 1 and a > 0.
引用
收藏
页码:1793 / 1806
页数:13
相关论文
共 18 条
[1]  
Šverák V.(1993)On optimal shape design J. Math. Pures Appl. 72 537-551
[2]  
Bucur D.(1995)-Dimensional shape optimization under capacity constraints J. Differential Equations 123 504-522
[3]  
Zolésio J. P.(1987)Shape optimization in shell theory Engrg. Optim. 11 289-303
[4]  
Chenais D.(2003)Shape optimization in viscous compressible fluids Appl. Math. Optim. 47 59-78
[5]  
Feireisl E.(2003)On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow Math. Methods Appl. Sci. 26 489-517
[6]  
Erban R.(2007)On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow Math. Methods Appl. Sci. 30 305-329
[7]  
Zhang Y. H.(2001)On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids J. Math. Fluid Dynamics 3 358-392
[8]  
Tan Z.(2005)Compressible Navier-Stokes model with inflow-outflow boundary conditions J. Math. Fluid Mechanics 7 485-514
[9]  
Feireisl E.(1975)On commutators of singular integrals and bilinear singular integrals Trans. Amer. Math. Soc. 212 315-331
[10]  
Novotný A.(2001)On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable Comment. Math. Univ. Carolin. 42 83-98