Trimodal Steady Water Waves

被引:0
作者
Mats Ehrnström
Erik Wahlén
机构
[1] Norwegian University of Science and Technology,Department of Mathematical Sciences
[2] Lund University,Centre for Mathematical Sciences
来源
Archive for Rational Mechanics and Analysis | 2015年 / 216卷
关键词
Vorticity; Water Wave; Implicit Function Theorem; Critical Layer; Vorticity Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
We construct three-dimensional families of small-amplitude gravity-driven rotational steady water waves of finite depth. The solutions contain counter-currents and multiple crests in each minimal period. Each such wave is, generically, a combination of three different Fourier modes, giving rise to a rich and complex variety of wave patterns. The bifurcation argument is based on a blow-up technique, taking advantage of three parameters associated with the vorticity distribution, the strength of the background stream, and the period of the wave.
引用
收藏
页码:449 / 471
页数:22
相关论文
共 30 条
[1]  
Baldi P.(2010)Bifurcation and secondary bifurcation of heavy periodic hydroelastic travelling waves Interfaces Free Bound. 12 1-22
[2]  
Toland J.F.(2000)The sub-harmonic bifurcation of Stokes waves Arch. Ration. Mech. Anal. 152 241-270
[3]  
Buffoni B.(2004)Exact steady periodic water waves with vorticity Commun. Pure Appl. Math. 57 481-527
[4]  
Dancer E.N.(2011)Steady periodic water waves with constant vorticity: Regularity and local bifurcation Arch. Ration. Mech. Anal. 199 33-67
[5]  
Toland J.F.(1971)Bifurcation from simple eigenvalues J. Funct. Anal. 8 321-340
[6]  
Constantin A.(2011)On stratified steady periodic water waves with linear density distribution and stagnation points J. Differ. Equ. 251 2932-2949
[7]  
Strauss W.A.(1809)Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile Ann. Phys. 2 412-445
[8]  
Constantin A.(1989)Small amplitude capillary-gravity waves in a channel of finite depth Glasgow Math. J. 31 141-160
[9]  
Varvaruca E.(1986)Symmetry and the bifurcation of capillary-gravity waves Arch. Ration. Mech. Anal. 96 29-53
[10]  
Crandall M.G.(2008)Large-amplitude steady rotational water waves Eur. J. Mech. B Fluids 27 96-109